| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsrso.o |
⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) |
| 2 |
|
opsrso.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 3 |
|
opsrso.r |
⊢ ( 𝜑 → 𝑅 ∈ Toset ) |
| 4 |
|
opsrso.t |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) |
| 5 |
|
opsrso.w |
⊢ ( 𝜑 → 𝑇 We 𝐼 ) |
| 6 |
|
opsrso.l |
⊢ ≤ = ( lt ‘ 𝑂 ) |
| 7 |
|
opsrso.b |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 8 |
1 2 3 4 5
|
opsrtos |
⊢ ( 𝜑 → 𝑂 ∈ Toset ) |
| 9 |
|
eqid |
⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) |
| 10 |
7 9 6
|
tosso |
⊢ ( 𝑂 ∈ Toset → ( 𝑂 ∈ Toset ↔ ( ≤ Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ( le ‘ 𝑂 ) ) ) ) |
| 11 |
10
|
ibi |
⊢ ( 𝑂 ∈ Toset → ( ≤ Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ( le ‘ 𝑂 ) ) ) |
| 12 |
8 11
|
syl |
⊢ ( 𝜑 → ( ≤ Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ( le ‘ 𝑂 ) ) ) |
| 13 |
12
|
simpld |
⊢ ( 𝜑 → ≤ Or 𝐵 ) |