Metamath Proof Explorer


Theorem opsrso

Description: The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses opsrso.o 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
opsrso.i ( 𝜑𝐼𝑉 )
opsrso.r ( 𝜑𝑅 ∈ Toset )
opsrso.t ( 𝜑𝑇 ⊆ ( 𝐼 × 𝐼 ) )
opsrso.w ( 𝜑𝑇 We 𝐼 )
opsrso.l = ( lt ‘ 𝑂 )
opsrso.b 𝐵 = ( Base ‘ 𝑂 )
Assertion opsrso ( 𝜑 Or 𝐵 )

Proof

Step Hyp Ref Expression
1 opsrso.o 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
2 opsrso.i ( 𝜑𝐼𝑉 )
3 opsrso.r ( 𝜑𝑅 ∈ Toset )
4 opsrso.t ( 𝜑𝑇 ⊆ ( 𝐼 × 𝐼 ) )
5 opsrso.w ( 𝜑𝑇 We 𝐼 )
6 opsrso.l = ( lt ‘ 𝑂 )
7 opsrso.b 𝐵 = ( Base ‘ 𝑂 )
8 1 2 3 4 5 opsrtos ( 𝜑𝑂 ∈ Toset )
9 eqid ( le ‘ 𝑂 ) = ( le ‘ 𝑂 )
10 7 9 6 tosso ( 𝑂 ∈ Toset → ( 𝑂 ∈ Toset ↔ ( Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ( le ‘ 𝑂 ) ) ) )
11 10 ibi ( 𝑂 ∈ Toset → ( Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ( le ‘ 𝑂 ) ) )
12 8 11 syl ( 𝜑 → ( Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ( le ‘ 𝑂 ) ) )
13 12 simpld ( 𝜑 Or 𝐵 )