Metamath Proof Explorer


Theorem opsrtos

Description: The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses opsrso.o O = I ordPwSer R T
opsrso.i φ I V
opsrso.r φ R Toset
opsrso.t φ T I × I
opsrso.w φ T We I
Assertion opsrtos φ O Toset

Proof

Step Hyp Ref Expression
1 opsrso.o O = I ordPwSer R T
2 opsrso.i φ I V
3 opsrso.r φ R Toset
4 opsrso.t φ T I × I
5 opsrso.w φ T We I
6 eqid I mPwSer R = I mPwSer R
7 eqid Base I mPwSer R = Base I mPwSer R
8 eqid < R = < R
9 eqid T < bag I = T < bag I
10 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
11 biid z h 0 I | h -1 Fin x z < R y z w h 0 I | h -1 Fin w T < bag I z x w = y w z h 0 I | h -1 Fin x z < R y z w h 0 I | h -1 Fin w T < bag I z x w = y w
12 eqid O = O
13 1 2 3 4 5 6 7 8 9 10 11 12 opsrtoslem2 φ O Toset