Metamath Proof Explorer


Theorem opsrtoslem2

Description: Lemma for opsrtos . (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses opsrso.o O = I ordPwSer R T
opsrso.i φ I V
opsrso.r φ R Toset
opsrso.t φ T I × I
opsrso.w φ T We I
opsrtoslem.s S = I mPwSer R
opsrtoslem.b B = Base S
opsrtoslem.q < ˙ = < R
opsrtoslem.c C = T < bag I
opsrtoslem.d D = h 0 I | h -1 Fin
opsrtoslem.ps ψ z D x z < ˙ y z w D w C z x w = y w
opsrtoslem.l ˙ = O
Assertion opsrtoslem2 φ O Toset

Proof

Step Hyp Ref Expression
1 opsrso.o O = I ordPwSer R T
2 opsrso.i φ I V
3 opsrso.r φ R Toset
4 opsrso.t φ T I × I
5 opsrso.w φ T We I
6 opsrtoslem.s S = I mPwSer R
7 opsrtoslem.b B = Base S
8 opsrtoslem.q < ˙ = < R
9 opsrtoslem.c C = T < bag I
10 opsrtoslem.d D = h 0 I | h -1 Fin
11 opsrtoslem.ps ψ z D x z < ˙ y z w D w C z x w = y w
12 opsrtoslem.l ˙ = O
13 ovex 0 I V
14 10 13 rabex2 D V
15 2 2 xpexd φ I × I V
16 15 4 ssexd φ T V
17 9 10 2 16 5 ltbwe φ C We D
18 eqid Base R = Base R
19 eqid R = R
20 18 19 8 tosso R Toset R Toset < ˙ Or Base R I Base R R
21 20 ibi R Toset < ˙ Or Base R I Base R R
22 3 21 syl φ < ˙ Or Base R I Base R R
23 22 simpld φ < ˙ Or Base R
24 11 opabbii x y | ψ = x y | z D x z < ˙ y z w D w C z x w = y w
25 24 wemapso D V C We D < ˙ Or Base R x y | ψ Or Base R D
26 14 17 23 25 mp3an2i φ x y | ψ Or Base R D
27 6 18 10 7 2 psrbas φ B = Base R D
28 soeq2 B = Base R D x y | ψ Or B x y | ψ Or Base R D
29 27 28 syl φ x y | ψ Or B x y | ψ Or Base R D
30 26 29 mpbird φ x y | ψ Or B
31 soinxp x y | ψ Or B x y | ψ B × B Or B
32 30 31 sylib φ x y | ψ B × B Or B
33 1 fvexi O V
34 eqid < O = < O
35 12 34 pltfval O V < O = ˙ I
36 33 35 ax-mp < O = ˙ I
37 difundir x y | ψ B × B I B I = x y | ψ B × B I I B I
38 resss I B I
39 ssdif0 I B I I B I =
40 38 39 mpbi I B I =
41 40 uneq2i x y | ψ B × B I I B I = x y | ψ B × B I
42 un0 x y | ψ B × B I = x y | ψ B × B I
43 37 41 42 3eqtri x y | ψ B × B I B I = x y | ψ B × B I
44 1 2 3 4 5 6 7 8 9 10 11 12 opsrtoslem1 φ ˙ = x y | ψ B × B I B
45 44 difeq1d φ ˙ I = x y | ψ B × B I B I
46 relinxp Rel x y | ψ B × B
47 46 a1i φ Rel x y | ψ B × B
48 df-br a I b a b I
49 vex b V
50 49 ideq a I b a = b
51 48 50 bitr3i a b I a = b
52 brin a x y | ψ B × B a a x y | ψ a a B × B a
53 52 simprbi a x y | ψ B × B a a B × B a
54 brxp a B × B a a B a B
55 54 simprbi a B × B a a B
56 53 55 syl a x y | ψ B × B a a B
57 sonr x y | ψ B × B Or B a B ¬ a x y | ψ B × B a
58 57 ex x y | ψ B × B Or B a B ¬ a x y | ψ B × B a
59 32 56 58 syl2im φ a x y | ψ B × B a ¬ a x y | ψ B × B a
60 59 pm2.01d φ ¬ a x y | ψ B × B a
61 breq2 a = b a x y | ψ B × B a a x y | ψ B × B b
62 df-br a x y | ψ B × B b a b x y | ψ B × B
63 61 62 syl6bb a = b a x y | ψ B × B a a b x y | ψ B × B
64 63 notbid a = b ¬ a x y | ψ B × B a ¬ a b x y | ψ B × B
65 60 64 syl5ibcom φ a = b ¬ a b x y | ψ B × B
66 51 65 syl5bi φ a b I ¬ a b x y | ψ B × B
67 66 con2d φ a b x y | ψ B × B ¬ a b I
68 opex a b V
69 eldif a b V I a b V ¬ a b I
70 68 69 mpbiran a b V I ¬ a b I
71 67 70 syl6ibr φ a b x y | ψ B × B a b V I
72 47 71 relssdv φ x y | ψ B × B V I
73 disj2 x y | ψ B × B I = x y | ψ B × B V I
74 72 73 sylibr φ x y | ψ B × B I =
75 disj3 x y | ψ B × B I = x y | ψ B × B = x y | ψ B × B I
76 74 75 sylib φ x y | ψ B × B = x y | ψ B × B I
77 43 45 76 3eqtr4a φ ˙ I = x y | ψ B × B
78 36 77 syl5eq φ < O = x y | ψ B × B
79 soeq1 < O = x y | ψ B × B < O Or B x y | ψ B × B Or B
80 78 79 syl φ < O Or B x y | ψ B × B Or B
81 32 80 mpbird φ < O Or B
82 6 1 4 opsrbas φ Base S = Base O
83 7 82 syl5eq φ B = Base O
84 soeq2 B = Base O < O Or B < O Or Base O
85 83 84 syl φ < O Or B < O Or Base O
86 81 85 mpbid φ < O Or Base O
87 83 reseq2d φ I B = I Base O
88 ssun2 I B x y | ψ B × B I B
89 87 88 eqsstrrdi φ I Base O x y | ψ B × B I B
90 89 44 sseqtrrd φ I Base O ˙
91 eqid Base O = Base O
92 91 12 34 tosso O V O Toset < O Or Base O I Base O ˙
93 33 92 ax-mp O Toset < O Or Base O I Base O ˙
94 86 90 93 sylanbrc φ O Toset