Metamath Proof Explorer


Theorem opsrtoslem2

Description: Lemma for opsrtos . (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses opsrso.o O = I ordPwSer R T
opsrso.i φ I V
opsrso.r φ R Toset
opsrso.t φ T I × I
opsrso.w φ T We I
opsrtoslem.s S = I mPwSer R
opsrtoslem.b B = Base S
opsrtoslem.q < ˙ = < R
opsrtoslem.c C = T < bag I
opsrtoslem.d D = h 0 I | h -1 Fin
opsrtoslem.ps ψ z D x z < ˙ y z w D w C z x w = y w
opsrtoslem.l ˙ = O
Assertion opsrtoslem2 φ O Toset

Proof

Step Hyp Ref Expression
1 opsrso.o O = I ordPwSer R T
2 opsrso.i φ I V
3 opsrso.r φ R Toset
4 opsrso.t φ T I × I
5 opsrso.w φ T We I
6 opsrtoslem.s S = I mPwSer R
7 opsrtoslem.b B = Base S
8 opsrtoslem.q < ˙ = < R
9 opsrtoslem.c C = T < bag I
10 opsrtoslem.d D = h 0 I | h -1 Fin
11 opsrtoslem.ps ψ z D x z < ˙ y z w D w C z x w = y w
12 opsrtoslem.l ˙ = O
13 2 2 xpexd φ I × I V
14 13 4 ssexd φ T V
15 9 10 2 14 5 ltbwe φ C We D
16 eqid Base R = Base R
17 eqid R = R
18 16 17 8 tosso R Toset R Toset < ˙ Or Base R I Base R R
19 18 ibi R Toset < ˙ Or Base R I Base R R
20 3 19 syl φ < ˙ Or Base R I Base R R
21 20 simpld φ < ˙ Or Base R
22 11 opabbii x y | ψ = x y | z D x z < ˙ y z w D w C z x w = y w
23 22 wemapso C We D < ˙ Or Base R x y | ψ Or Base R D
24 15 21 23 syl2anc φ x y | ψ Or Base R D
25 6 16 10 7 2 psrbas φ B = Base R D
26 soeq2 B = Base R D x y | ψ Or B x y | ψ Or Base R D
27 25 26 syl φ x y | ψ Or B x y | ψ Or Base R D
28 24 27 mpbird φ x y | ψ Or B
29 soinxp x y | ψ Or B x y | ψ B × B Or B
30 28 29 sylib φ x y | ψ B × B Or B
31 1 fvexi O V
32 eqid < O = < O
33 12 32 pltfval O V < O = ˙ I
34 31 33 ax-mp < O = ˙ I
35 difundir x y | ψ B × B I B I = x y | ψ B × B I I B I
36 resss I B I
37 ssdif0 I B I I B I =
38 36 37 mpbi I B I =
39 38 uneq2i x y | ψ B × B I I B I = x y | ψ B × B I
40 un0 x y | ψ B × B I = x y | ψ B × B I
41 35 39 40 3eqtri x y | ψ B × B I B I = x y | ψ B × B I
42 1 2 3 4 5 6 7 8 9 10 11 12 opsrtoslem1 φ ˙ = x y | ψ B × B I B
43 42 difeq1d φ ˙ I = x y | ψ B × B I B I
44 relinxp Rel x y | ψ B × B
45 44 a1i φ Rel x y | ψ B × B
46 df-br a I b a b I
47 vex b V
48 47 ideq a I b a = b
49 46 48 bitr3i a b I a = b
50 brin a x y | ψ B × B a a x y | ψ a a B × B a
51 50 simprbi a x y | ψ B × B a a B × B a
52 brxp a B × B a a B a B
53 52 simprbi a B × B a a B
54 51 53 syl a x y | ψ B × B a a B
55 sonr x y | ψ B × B Or B a B ¬ a x y | ψ B × B a
56 55 ex x y | ψ B × B Or B a B ¬ a x y | ψ B × B a
57 30 54 56 syl2im φ a x y | ψ B × B a ¬ a x y | ψ B × B a
58 57 pm2.01d φ ¬ a x y | ψ B × B a
59 breq2 a = b a x y | ψ B × B a a x y | ψ B × B b
60 df-br a x y | ψ B × B b a b x y | ψ B × B
61 59 60 bitrdi a = b a x y | ψ B × B a a b x y | ψ B × B
62 61 notbid a = b ¬ a x y | ψ B × B a ¬ a b x y | ψ B × B
63 58 62 syl5ibcom φ a = b ¬ a b x y | ψ B × B
64 49 63 syl5bi φ a b I ¬ a b x y | ψ B × B
65 64 con2d φ a b x y | ψ B × B ¬ a b I
66 opex a b V
67 eldif a b V I a b V ¬ a b I
68 66 67 mpbiran a b V I ¬ a b I
69 65 68 syl6ibr φ a b x y | ψ B × B a b V I
70 45 69 relssdv φ x y | ψ B × B V I
71 disj2 x y | ψ B × B I = x y | ψ B × B V I
72 70 71 sylibr φ x y | ψ B × B I =
73 disj3 x y | ψ B × B I = x y | ψ B × B = x y | ψ B × B I
74 72 73 sylib φ x y | ψ B × B = x y | ψ B × B I
75 41 43 74 3eqtr4a φ ˙ I = x y | ψ B × B
76 34 75 syl5eq φ < O = x y | ψ B × B
77 soeq1 < O = x y | ψ B × B < O Or B x y | ψ B × B Or B
78 76 77 syl φ < O Or B x y | ψ B × B Or B
79 30 78 mpbird φ < O Or B
80 6 1 4 opsrbas φ Base S = Base O
81 7 80 syl5eq φ B = Base O
82 soeq2 B = Base O < O Or B < O Or Base O
83 81 82 syl φ < O Or B < O Or Base O
84 79 83 mpbid φ < O Or Base O
85 81 reseq2d φ I B = I Base O
86 ssun2 I B x y | ψ B × B I B
87 85 86 eqsstrrdi φ I Base O x y | ψ B × B I B
88 87 42 sseqtrrd φ I Base O ˙
89 eqid Base O = Base O
90 89 12 32 tosso O V O Toset < O Or Base O I Base O ˙
91 31 90 ax-mp O Toset < O Or Base O I Base O ˙
92 84 88 91 sylanbrc φ O Toset