Metamath Proof Explorer


Theorem opsrtoslem2

Description: Lemma for opsrtos . (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses opsrso.o
|- O = ( ( I ordPwSer R ) ` T )
opsrso.i
|- ( ph -> I e. V )
opsrso.r
|- ( ph -> R e. Toset )
opsrso.t
|- ( ph -> T C_ ( I X. I ) )
opsrso.w
|- ( ph -> T We I )
opsrtoslem.s
|- S = ( I mPwSer R )
opsrtoslem.b
|- B = ( Base ` S )
opsrtoslem.q
|- .< = ( lt ` R )
opsrtoslem.c
|- C = ( T 
opsrtoslem.d
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
opsrtoslem.ps
|- ( ps <-> E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) )
opsrtoslem.l
|- .<_ = ( le ` O )
Assertion opsrtoslem2
|- ( ph -> O e. Toset )

Proof

Step Hyp Ref Expression
1 opsrso.o
 |-  O = ( ( I ordPwSer R ) ` T )
2 opsrso.i
 |-  ( ph -> I e. V )
3 opsrso.r
 |-  ( ph -> R e. Toset )
4 opsrso.t
 |-  ( ph -> T C_ ( I X. I ) )
5 opsrso.w
 |-  ( ph -> T We I )
6 opsrtoslem.s
 |-  S = ( I mPwSer R )
7 opsrtoslem.b
 |-  B = ( Base ` S )
8 opsrtoslem.q
 |-  .< = ( lt ` R )
9 opsrtoslem.c
 |-  C = ( T 
10 opsrtoslem.d
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
11 opsrtoslem.ps
 |-  ( ps <-> E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) )
12 opsrtoslem.l
 |-  .<_ = ( le ` O )
13 ovex
 |-  ( NN0 ^m I ) e. _V
14 10 13 rabex2
 |-  D e. _V
15 2 2 xpexd
 |-  ( ph -> ( I X. I ) e. _V )
16 15 4 ssexd
 |-  ( ph -> T e. _V )
17 9 10 2 16 5 ltbwe
 |-  ( ph -> C We D )
18 eqid
 |-  ( Base ` R ) = ( Base ` R )
19 eqid
 |-  ( le ` R ) = ( le ` R )
20 18 19 8 tosso
 |-  ( R e. Toset -> ( R e. Toset <-> ( .< Or ( Base ` R ) /\ ( _I |` ( Base ` R ) ) C_ ( le ` R ) ) ) )
21 20 ibi
 |-  ( R e. Toset -> ( .< Or ( Base ` R ) /\ ( _I |` ( Base ` R ) ) C_ ( le ` R ) ) )
22 3 21 syl
 |-  ( ph -> ( .< Or ( Base ` R ) /\ ( _I |` ( Base ` R ) ) C_ ( le ` R ) ) )
23 22 simpld
 |-  ( ph -> .< Or ( Base ` R ) )
24 11 opabbii
 |-  { <. x , y >. | ps } = { <. x , y >. | E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) }
25 24 wemapso
 |-  ( ( D e. _V /\ C We D /\ .< Or ( Base ` R ) ) -> { <. x , y >. | ps } Or ( ( Base ` R ) ^m D ) )
26 14 17 23 25 mp3an2i
 |-  ( ph -> { <. x , y >. | ps } Or ( ( Base ` R ) ^m D ) )
27 6 18 10 7 2 psrbas
 |-  ( ph -> B = ( ( Base ` R ) ^m D ) )
28 soeq2
 |-  ( B = ( ( Base ` R ) ^m D ) -> ( { <. x , y >. | ps } Or B <-> { <. x , y >. | ps } Or ( ( Base ` R ) ^m D ) ) )
29 27 28 syl
 |-  ( ph -> ( { <. x , y >. | ps } Or B <-> { <. x , y >. | ps } Or ( ( Base ` R ) ^m D ) ) )
30 26 29 mpbird
 |-  ( ph -> { <. x , y >. | ps } Or B )
31 soinxp
 |-  ( { <. x , y >. | ps } Or B <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B )
32 30 31 sylib
 |-  ( ph -> ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B )
33 1 fvexi
 |-  O e. _V
34 eqid
 |-  ( lt ` O ) = ( lt ` O )
35 12 34 pltfval
 |-  ( O e. _V -> ( lt ` O ) = ( .<_ \ _I ) )
36 33 35 ax-mp
 |-  ( lt ` O ) = ( .<_ \ _I )
37 difundir
 |-  ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) \ _I ) = ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) u. ( ( _I |` B ) \ _I ) )
38 resss
 |-  ( _I |` B ) C_ _I
39 ssdif0
 |-  ( ( _I |` B ) C_ _I <-> ( ( _I |` B ) \ _I ) = (/) )
40 38 39 mpbi
 |-  ( ( _I |` B ) \ _I ) = (/)
41 40 uneq2i
 |-  ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) u. ( ( _I |` B ) \ _I ) ) = ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) u. (/) )
42 un0
 |-  ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) u. (/) ) = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I )
43 37 41 42 3eqtri
 |-  ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) \ _I ) = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I )
44 1 2 3 4 5 6 7 8 9 10 11 12 opsrtoslem1
 |-  ( ph -> .<_ = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) )
45 44 difeq1d
 |-  ( ph -> ( .<_ \ _I ) = ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) \ _I ) )
46 relinxp
 |-  Rel ( { <. x , y >. | ps } i^i ( B X. B ) )
47 46 a1i
 |-  ( ph -> Rel ( { <. x , y >. | ps } i^i ( B X. B ) ) )
48 df-br
 |-  ( a _I b <-> <. a , b >. e. _I )
49 vex
 |-  b e. _V
50 49 ideq
 |-  ( a _I b <-> a = b )
51 48 50 bitr3i
 |-  ( <. a , b >. e. _I <-> a = b )
52 brin
 |-  ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a <-> ( a { <. x , y >. | ps } a /\ a ( B X. B ) a ) )
53 52 simprbi
 |-  ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a -> a ( B X. B ) a )
54 brxp
 |-  ( a ( B X. B ) a <-> ( a e. B /\ a e. B ) )
55 54 simprbi
 |-  ( a ( B X. B ) a -> a e. B )
56 53 55 syl
 |-  ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a -> a e. B )
57 sonr
 |-  ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B /\ a e. B ) -> -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a )
58 57 ex
 |-  ( ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B -> ( a e. B -> -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a ) )
59 32 56 58 syl2im
 |-  ( ph -> ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a -> -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a ) )
60 59 pm2.01d
 |-  ( ph -> -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a )
61 breq2
 |-  ( a = b -> ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a <-> a ( { <. x , y >. | ps } i^i ( B X. B ) ) b ) )
62 df-br
 |-  ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) b <-> <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) )
63 61 62 syl6bb
 |-  ( a = b -> ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a <-> <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) )
64 63 notbid
 |-  ( a = b -> ( -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a <-> -. <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) )
65 60 64 syl5ibcom
 |-  ( ph -> ( a = b -> -. <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) )
66 51 65 syl5bi
 |-  ( ph -> ( <. a , b >. e. _I -> -. <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) )
67 66 con2d
 |-  ( ph -> ( <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) -> -. <. a , b >. e. _I ) )
68 opex
 |-  <. a , b >. e. _V
69 eldif
 |-  ( <. a , b >. e. ( _V \ _I ) <-> ( <. a , b >. e. _V /\ -. <. a , b >. e. _I ) )
70 68 69 mpbiran
 |-  ( <. a , b >. e. ( _V \ _I ) <-> -. <. a , b >. e. _I )
71 67 70 syl6ibr
 |-  ( ph -> ( <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) -> <. a , b >. e. ( _V \ _I ) ) )
72 47 71 relssdv
 |-  ( ph -> ( { <. x , y >. | ps } i^i ( B X. B ) ) C_ ( _V \ _I ) )
73 disj2
 |-  ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) i^i _I ) = (/) <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) C_ ( _V \ _I ) )
74 72 73 sylibr
 |-  ( ph -> ( ( { <. x , y >. | ps } i^i ( B X. B ) ) i^i _I ) = (/) )
75 disj3
 |-  ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) i^i _I ) = (/) <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) )
76 74 75 sylib
 |-  ( ph -> ( { <. x , y >. | ps } i^i ( B X. B ) ) = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) )
77 43 45 76 3eqtr4a
 |-  ( ph -> ( .<_ \ _I ) = ( { <. x , y >. | ps } i^i ( B X. B ) ) )
78 36 77 syl5eq
 |-  ( ph -> ( lt ` O ) = ( { <. x , y >. | ps } i^i ( B X. B ) ) )
79 soeq1
 |-  ( ( lt ` O ) = ( { <. x , y >. | ps } i^i ( B X. B ) ) -> ( ( lt ` O ) Or B <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B ) )
80 78 79 syl
 |-  ( ph -> ( ( lt ` O ) Or B <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B ) )
81 32 80 mpbird
 |-  ( ph -> ( lt ` O ) Or B )
82 6 1 4 opsrbas
 |-  ( ph -> ( Base ` S ) = ( Base ` O ) )
83 7 82 syl5eq
 |-  ( ph -> B = ( Base ` O ) )
84 soeq2
 |-  ( B = ( Base ` O ) -> ( ( lt ` O ) Or B <-> ( lt ` O ) Or ( Base ` O ) ) )
85 83 84 syl
 |-  ( ph -> ( ( lt ` O ) Or B <-> ( lt ` O ) Or ( Base ` O ) ) )
86 81 85 mpbid
 |-  ( ph -> ( lt ` O ) Or ( Base ` O ) )
87 83 reseq2d
 |-  ( ph -> ( _I |` B ) = ( _I |` ( Base ` O ) ) )
88 ssun2
 |-  ( _I |` B ) C_ ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) )
89 87 88 eqsstrrdi
 |-  ( ph -> ( _I |` ( Base ` O ) ) C_ ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) )
90 89 44 sseqtrrd
 |-  ( ph -> ( _I |` ( Base ` O ) ) C_ .<_ )
91 eqid
 |-  ( Base ` O ) = ( Base ` O )
92 91 12 34 tosso
 |-  ( O e. _V -> ( O e. Toset <-> ( ( lt ` O ) Or ( Base ` O ) /\ ( _I |` ( Base ` O ) ) C_ .<_ ) ) )
93 33 92 ax-mp
 |-  ( O e. Toset <-> ( ( lt ` O ) Or ( Base ` O ) /\ ( _I |` ( Base ` O ) ) C_ .<_ ) )
94 86 90 93 sylanbrc
 |-  ( ph -> O e. Toset )