| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wemapso.t |
|- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
| 2 |
|
ssid |
|- ( B ^m A ) C_ ( B ^m A ) |
| 3 |
|
weso |
|- ( R We A -> R Or A ) |
| 4 |
3
|
adantr |
|- ( ( R We A /\ S Or B ) -> R Or A ) |
| 5 |
|
simpr |
|- ( ( R We A /\ S Or B ) -> S Or B ) |
| 6 |
|
vex |
|- a e. _V |
| 7 |
6
|
difexi |
|- ( a \ b ) e. _V |
| 8 |
7
|
dmex |
|- dom ( a \ b ) e. _V |
| 9 |
8
|
a1i |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> dom ( a \ b ) e. _V ) |
| 10 |
|
wefr |
|- ( R We A -> R Fr A ) |
| 11 |
10
|
ad2antrr |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> R Fr A ) |
| 12 |
|
difss |
|- ( a \ b ) C_ a |
| 13 |
|
dmss |
|- ( ( a \ b ) C_ a -> dom ( a \ b ) C_ dom a ) |
| 14 |
12 13
|
ax-mp |
|- dom ( a \ b ) C_ dom a |
| 15 |
|
simprll |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> a e. ( B ^m A ) ) |
| 16 |
|
elmapi |
|- ( a e. ( B ^m A ) -> a : A --> B ) |
| 17 |
15 16
|
syl |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> a : A --> B ) |
| 18 |
14 17
|
fssdm |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> dom ( a \ b ) C_ A ) |
| 19 |
|
simprr |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> a =/= b ) |
| 20 |
17
|
ffnd |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> a Fn A ) |
| 21 |
|
simprlr |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> b e. ( B ^m A ) ) |
| 22 |
|
elmapi |
|- ( b e. ( B ^m A ) -> b : A --> B ) |
| 23 |
21 22
|
syl |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> b : A --> B ) |
| 24 |
23
|
ffnd |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> b Fn A ) |
| 25 |
|
fndmdifeq0 |
|- ( ( a Fn A /\ b Fn A ) -> ( dom ( a \ b ) = (/) <-> a = b ) ) |
| 26 |
20 24 25
|
syl2anc |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> ( dom ( a \ b ) = (/) <-> a = b ) ) |
| 27 |
26
|
necon3bid |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> ( dom ( a \ b ) =/= (/) <-> a =/= b ) ) |
| 28 |
19 27
|
mpbird |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> dom ( a \ b ) =/= (/) ) |
| 29 |
|
fri |
|- ( ( ( dom ( a \ b ) e. _V /\ R Fr A ) /\ ( dom ( a \ b ) C_ A /\ dom ( a \ b ) =/= (/) ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) |
| 30 |
9 11 18 28 29
|
syl22anc |
|- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) |
| 31 |
1 2 4 5 30
|
wemapsolem |
|- ( ( R We A /\ S Or B ) -> T Or ( B ^m A ) ) |