| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wemapso.t |
|- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
| 2 |
|
wemapso2.u |
|- U = { x e. ( B ^m A ) | x finSupp Z } |
| 3 |
2
|
ssrab3 |
|- U C_ ( B ^m A ) |
| 4 |
|
simpl2 |
|- ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> R Or A ) |
| 5 |
|
simpl3 |
|- ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> S Or B ) |
| 6 |
|
simprll |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a e. U ) |
| 7 |
|
breq1 |
|- ( x = a -> ( x finSupp Z <-> a finSupp Z ) ) |
| 8 |
7 2
|
elrab2 |
|- ( a e. U <-> ( a e. ( B ^m A ) /\ a finSupp Z ) ) |
| 9 |
8
|
simprbi |
|- ( a e. U -> a finSupp Z ) |
| 10 |
6 9
|
syl |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a finSupp Z ) |
| 11 |
|
simprlr |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b e. U ) |
| 12 |
|
breq1 |
|- ( x = b -> ( x finSupp Z <-> b finSupp Z ) ) |
| 13 |
12 2
|
elrab2 |
|- ( b e. U <-> ( b e. ( B ^m A ) /\ b finSupp Z ) ) |
| 14 |
13
|
simprbi |
|- ( b e. U -> b finSupp Z ) |
| 15 |
11 14
|
syl |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b finSupp Z ) |
| 16 |
10 15
|
fsuppunfi |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( a supp Z ) u. ( b supp Z ) ) e. Fin ) |
| 17 |
3 6
|
sselid |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a e. ( B ^m A ) ) |
| 18 |
|
elmapi |
|- ( a e. ( B ^m A ) -> a : A --> B ) |
| 19 |
17 18
|
syl |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a : A --> B ) |
| 20 |
19
|
ffnd |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a Fn A ) |
| 21 |
3 11
|
sselid |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b e. ( B ^m A ) ) |
| 22 |
|
elmapi |
|- ( b e. ( B ^m A ) -> b : A --> B ) |
| 23 |
21 22
|
syl |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b : A --> B ) |
| 24 |
23
|
ffnd |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b Fn A ) |
| 25 |
|
fndmdif |
|- ( ( a Fn A /\ b Fn A ) -> dom ( a \ b ) = { c e. A | ( a ` c ) =/= ( b ` c ) } ) |
| 26 |
20 24 25
|
syl2anc |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) = { c e. A | ( a ` c ) =/= ( b ` c ) } ) |
| 27 |
|
neneor |
|- ( ( a ` c ) =/= ( b ` c ) -> ( ( a ` c ) =/= Z \/ ( b ` c ) =/= Z ) ) |
| 28 |
|
elun |
|- ( c e. ( ( a supp Z ) u. ( b supp Z ) ) <-> ( c e. ( a supp Z ) \/ c e. ( b supp Z ) ) ) |
| 29 |
|
simpr |
|- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> c e. A ) |
| 30 |
20
|
adantr |
|- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> a Fn A ) |
| 31 |
|
elex |
|- ( A e. V -> A e. _V ) |
| 32 |
31
|
3ad2ant1 |
|- ( ( A e. V /\ R Or A /\ S Or B ) -> A e. _V ) |
| 33 |
32
|
adantr |
|- ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> A e. _V ) |
| 34 |
33
|
ad2antrr |
|- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> A e. _V ) |
| 35 |
|
simpr |
|- ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> Z e. W ) |
| 36 |
35
|
ad2antrr |
|- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> Z e. W ) |
| 37 |
|
elsuppfn |
|- ( ( a Fn A /\ A e. _V /\ Z e. W ) -> ( c e. ( a supp Z ) <-> ( c e. A /\ ( a ` c ) =/= Z ) ) ) |
| 38 |
30 34 36 37
|
syl3anc |
|- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( a supp Z ) <-> ( c e. A /\ ( a ` c ) =/= Z ) ) ) |
| 39 |
29 38
|
mpbirand |
|- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( a supp Z ) <-> ( a ` c ) =/= Z ) ) |
| 40 |
24
|
adantr |
|- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> b Fn A ) |
| 41 |
|
simpll1 |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> A e. V ) |
| 42 |
41
|
adantr |
|- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> A e. V ) |
| 43 |
|
elsuppfn |
|- ( ( b Fn A /\ A e. V /\ Z e. W ) -> ( c e. ( b supp Z ) <-> ( c e. A /\ ( b ` c ) =/= Z ) ) ) |
| 44 |
40 42 36 43
|
syl3anc |
|- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( b supp Z ) <-> ( c e. A /\ ( b ` c ) =/= Z ) ) ) |
| 45 |
29 44
|
mpbirand |
|- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( b supp Z ) <-> ( b ` c ) =/= Z ) ) |
| 46 |
39 45
|
orbi12d |
|- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( ( c e. ( a supp Z ) \/ c e. ( b supp Z ) ) <-> ( ( a ` c ) =/= Z \/ ( b ` c ) =/= Z ) ) ) |
| 47 |
28 46
|
bitrid |
|- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( ( a supp Z ) u. ( b supp Z ) ) <-> ( ( a ` c ) =/= Z \/ ( b ` c ) =/= Z ) ) ) |
| 48 |
27 47
|
imbitrrid |
|- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( ( a ` c ) =/= ( b ` c ) -> c e. ( ( a supp Z ) u. ( b supp Z ) ) ) ) |
| 49 |
48
|
ralrimiva |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> A. c e. A ( ( a ` c ) =/= ( b ` c ) -> c e. ( ( a supp Z ) u. ( b supp Z ) ) ) ) |
| 50 |
|
rabss |
|- ( { c e. A | ( a ` c ) =/= ( b ` c ) } C_ ( ( a supp Z ) u. ( b supp Z ) ) <-> A. c e. A ( ( a ` c ) =/= ( b ` c ) -> c e. ( ( a supp Z ) u. ( b supp Z ) ) ) ) |
| 51 |
49 50
|
sylibr |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> { c e. A | ( a ` c ) =/= ( b ` c ) } C_ ( ( a supp Z ) u. ( b supp Z ) ) ) |
| 52 |
26 51
|
eqsstrd |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) C_ ( ( a supp Z ) u. ( b supp Z ) ) ) |
| 53 |
16 52
|
ssfid |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) e. Fin ) |
| 54 |
|
suppssdm |
|- ( a supp Z ) C_ dom a |
| 55 |
54 19
|
fssdm |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( a supp Z ) C_ A ) |
| 56 |
|
suppssdm |
|- ( b supp Z ) C_ dom b |
| 57 |
56 23
|
fssdm |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( b supp Z ) C_ A ) |
| 58 |
55 57
|
unssd |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( a supp Z ) u. ( b supp Z ) ) C_ A ) |
| 59 |
4
|
adantr |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> R Or A ) |
| 60 |
|
soss |
|- ( ( ( a supp Z ) u. ( b supp Z ) ) C_ A -> ( R Or A -> R Or ( ( a supp Z ) u. ( b supp Z ) ) ) ) |
| 61 |
58 59 60
|
sylc |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> R Or ( ( a supp Z ) u. ( b supp Z ) ) ) |
| 62 |
|
wofi |
|- ( ( R Or ( ( a supp Z ) u. ( b supp Z ) ) /\ ( ( a supp Z ) u. ( b supp Z ) ) e. Fin ) -> R We ( ( a supp Z ) u. ( b supp Z ) ) ) |
| 63 |
61 16 62
|
syl2anc |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> R We ( ( a supp Z ) u. ( b supp Z ) ) ) |
| 64 |
|
wefr |
|- ( R We ( ( a supp Z ) u. ( b supp Z ) ) -> R Fr ( ( a supp Z ) u. ( b supp Z ) ) ) |
| 65 |
63 64
|
syl |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> R Fr ( ( a supp Z ) u. ( b supp Z ) ) ) |
| 66 |
|
simprr |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a =/= b ) |
| 67 |
|
fndmdifeq0 |
|- ( ( a Fn A /\ b Fn A ) -> ( dom ( a \ b ) = (/) <-> a = b ) ) |
| 68 |
20 24 67
|
syl2anc |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( dom ( a \ b ) = (/) <-> a = b ) ) |
| 69 |
68
|
necon3bid |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( dom ( a \ b ) =/= (/) <-> a =/= b ) ) |
| 70 |
66 69
|
mpbird |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) =/= (/) ) |
| 71 |
|
fri |
|- ( ( ( dom ( a \ b ) e. Fin /\ R Fr ( ( a supp Z ) u. ( b supp Z ) ) ) /\ ( dom ( a \ b ) C_ ( ( a supp Z ) u. ( b supp Z ) ) /\ dom ( a \ b ) =/= (/) ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) |
| 72 |
53 65 52 70 71
|
syl22anc |
|- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) |
| 73 |
1 3 4 5 72
|
wemapsolem |
|- ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> T Or U ) |