| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wemapso.t |
|
| 2 |
|
wemapso2.u |
|
| 3 |
2
|
ssrab3 |
|
| 4 |
|
simpl2 |
|
| 5 |
|
simpl3 |
|
| 6 |
|
simprll |
|
| 7 |
|
breq1 |
|
| 8 |
7 2
|
elrab2 |
|
| 9 |
8
|
simprbi |
|
| 10 |
6 9
|
syl |
|
| 11 |
|
simprlr |
|
| 12 |
|
breq1 |
|
| 13 |
12 2
|
elrab2 |
|
| 14 |
13
|
simprbi |
|
| 15 |
11 14
|
syl |
|
| 16 |
10 15
|
fsuppunfi |
|
| 17 |
3 6
|
sselid |
|
| 18 |
|
elmapi |
|
| 19 |
17 18
|
syl |
|
| 20 |
19
|
ffnd |
|
| 21 |
3 11
|
sselid |
|
| 22 |
|
elmapi |
|
| 23 |
21 22
|
syl |
|
| 24 |
23
|
ffnd |
|
| 25 |
|
fndmdif |
|
| 26 |
20 24 25
|
syl2anc |
|
| 27 |
|
neneor |
|
| 28 |
|
elun |
|
| 29 |
|
simpr |
|
| 30 |
20
|
adantr |
|
| 31 |
|
elex |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
32
|
adantr |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
|
simpr |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
|
elsuppfn |
|
| 38 |
30 34 36 37
|
syl3anc |
|
| 39 |
29 38
|
mpbirand |
|
| 40 |
24
|
adantr |
|
| 41 |
|
simpll1 |
|
| 42 |
41
|
adantr |
|
| 43 |
|
elsuppfn |
|
| 44 |
40 42 36 43
|
syl3anc |
|
| 45 |
29 44
|
mpbirand |
|
| 46 |
39 45
|
orbi12d |
|
| 47 |
28 46
|
bitrid |
|
| 48 |
27 47
|
imbitrrid |
|
| 49 |
48
|
ralrimiva |
|
| 50 |
|
rabss |
|
| 51 |
49 50
|
sylibr |
|
| 52 |
26 51
|
eqsstrd |
|
| 53 |
16 52
|
ssfid |
|
| 54 |
|
suppssdm |
|
| 55 |
54 19
|
fssdm |
|
| 56 |
|
suppssdm |
|
| 57 |
56 23
|
fssdm |
|
| 58 |
55 57
|
unssd |
|
| 59 |
4
|
adantr |
|
| 60 |
|
soss |
|
| 61 |
58 59 60
|
sylc |
|
| 62 |
|
wofi |
|
| 63 |
61 16 62
|
syl2anc |
|
| 64 |
|
wefr |
|
| 65 |
63 64
|
syl |
|
| 66 |
|
simprr |
|
| 67 |
|
fndmdifeq0 |
|
| 68 |
20 24 67
|
syl2anc |
|
| 69 |
68
|
necon3bid |
|
| 70 |
66 69
|
mpbird |
|
| 71 |
|
fri |
|
| 72 |
53 65 52 70 71
|
syl22anc |
|
| 73 |
1 3 4 5 72
|
wemapsolem |
|