Metamath Proof Explorer


Theorem wemapsolem

Description: Lemma for wemapso . (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Mario Carneiro, 8-Feb-2015) (Revised by AV, 21-Jul-2024)

Ref Expression
Hypotheses wemapso.t T = x y | z A x z S y z w A w R z x w = y w
wemapsolem.1 U B A
wemapsolem.2 φ R Or A
wemapsolem.3 φ S Or B
wemapsolem.4 φ a U b U a b c dom a b d dom a b ¬ d R c
Assertion wemapsolem φ T Or U

Proof

Step Hyp Ref Expression
1 wemapso.t T = x y | z A x z S y z w A w R z x w = y w
2 wemapsolem.1 U B A
3 wemapsolem.2 φ R Or A
4 wemapsolem.3 φ S Or B
5 wemapsolem.4 φ a U b U a b c dom a b d dom a b ¬ d R c
6 sopo S Or B S Po B
7 4 6 syl φ S Po B
8 1 wemappo R Or A S Po B T Po B A
9 3 7 8 syl2anc φ T Po B A
10 poss U B A T Po B A T Po U
11 2 9 10 mpsyl φ T Po U
12 df-ne a b ¬ a = b
13 simprll φ a U b U a b a U
14 2 13 sselid φ a U b U a b a B A
15 elmapi a B A a : A B
16 14 15 syl φ a U b U a b a : A B
17 16 ffnd φ a U b U a b a Fn A
18 simprlr φ a U b U a b b U
19 2 18 sselid φ a U b U a b b B A
20 elmapi b B A b : A B
21 19 20 syl φ a U b U a b b : A B
22 21 ffnd φ a U b U a b b Fn A
23 fndmdif a Fn A b Fn A dom a b = x A | a x b x
24 17 22 23 syl2anc φ a U b U a b dom a b = x A | a x b x
25 24 eleq2d φ a U b U a b c dom a b c x A | a x b x
26 nesym a x b x ¬ b x = a x
27 fveq2 x = c b x = b c
28 fveq2 x = c a x = a c
29 27 28 eqeq12d x = c b x = a x b c = a c
30 29 notbid x = c ¬ b x = a x ¬ b c = a c
31 26 30 bitrid x = c a x b x ¬ b c = a c
32 31 elrab c x A | a x b x c A ¬ b c = a c
33 25 32 bitrdi φ a U b U a b c dom a b c A ¬ b c = a c
34 24 eleq2d φ a U b U a b d dom a b d x A | a x b x
35 fveq2 x = d b x = b d
36 fveq2 x = d a x = a d
37 35 36 eqeq12d x = d b x = a x b d = a d
38 37 notbid x = d ¬ b x = a x ¬ b d = a d
39 26 38 bitrid x = d a x b x ¬ b d = a d
40 39 elrab d x A | a x b x d A ¬ b d = a d
41 34 40 bitrdi φ a U b U a b d dom a b d A ¬ b d = a d
42 41 imbi1d φ a U b U a b d dom a b ¬ d R c d A ¬ b d = a d ¬ d R c
43 impexp d A ¬ b d = a d ¬ d R c d A ¬ b d = a d ¬ d R c
44 con34b d R c b d = a d ¬ b d = a d ¬ d R c
45 44 imbi2i d A d R c b d = a d d A ¬ b d = a d ¬ d R c
46 43 45 bitr4i d A ¬ b d = a d ¬ d R c d A d R c b d = a d
47 42 46 bitrdi φ a U b U a b d dom a b ¬ d R c d A d R c b d = a d
48 47 ralbidv2 φ a U b U a b d dom a b ¬ d R c d A d R c b d = a d
49 33 48 anbi12d φ a U b U a b c dom a b d dom a b ¬ d R c c A ¬ b c = a c d A d R c b d = a d
50 anass c A ¬ b c = a c d A d R c b d = a d c A ¬ b c = a c d A d R c b d = a d
51 49 50 bitrdi φ a U b U a b c dom a b d dom a b ¬ d R c c A ¬ b c = a c d A d R c b d = a d
52 51 rexbidv2 φ a U b U a b c dom a b d dom a b ¬ d R c c A ¬ b c = a c d A d R c b d = a d
53 5 52 mpbid φ a U b U a b c A ¬ b c = a c d A d R c b d = a d
54 4 ad2antrr φ a U b U a b c A S Or B
55 21 ffvelrnda φ a U b U a b c A b c B
56 16 ffvelrnda φ a U b U a b c A a c B
57 sotrieq S Or B b c B a c B b c = a c ¬ b c S a c a c S b c
58 57 con2bid S Or B b c B a c B b c S a c a c S b c ¬ b c = a c
59 58 biimprd S Or B b c B a c B ¬ b c = a c b c S a c a c S b c
60 54 55 56 59 syl12anc φ a U b U a b c A ¬ b c = a c b c S a c a c S b c
61 60 anim1d φ a U b U a b c A ¬ b c = a c d A d R c b d = a d b c S a c a c S b c d A d R c b d = a d
62 61 reximdva φ a U b U a b c A ¬ b c = a c d A d R c b d = a d c A b c S a c a c S b c d A d R c b d = a d
63 53 62 mpd φ a U b U a b c A b c S a c a c S b c d A d R c b d = a d
64 1 wemaplem1 b V a V b T a c A b c S a c d A d R c b d = a d
65 64 el2v b T a c A b c S a c d A d R c b d = a d
66 1 wemaplem1 a V b V a T b c A a c S b c d A d R c a d = b d
67 66 el2v a T b c A a c S b c d A d R c a d = b d
68 65 67 orbi12i b T a a T b c A b c S a c d A d R c b d = a d c A a c S b c d A d R c a d = b d
69 r19.43 c A b c S a c d A d R c b d = a d a c S b c d A d R c a d = b d c A b c S a c d A d R c b d = a d c A a c S b c d A d R c a d = b d
70 andir b c S a c a c S b c d A d R c b d = a d b c S a c d A d R c b d = a d a c S b c d A d R c b d = a d
71 eqcom b d = a d a d = b d
72 71 imbi2i d R c b d = a d d R c a d = b d
73 72 ralbii d A d R c b d = a d d A d R c a d = b d
74 73 anbi2i a c S b c d A d R c b d = a d a c S b c d A d R c a d = b d
75 74 orbi2i b c S a c d A d R c b d = a d a c S b c d A d R c b d = a d b c S a c d A d R c b d = a d a c S b c d A d R c a d = b d
76 70 75 bitr2i b c S a c d A d R c b d = a d a c S b c d A d R c a d = b d b c S a c a c S b c d A d R c b d = a d
77 76 rexbii c A b c S a c d A d R c b d = a d a c S b c d A d R c a d = b d c A b c S a c a c S b c d A d R c b d = a d
78 68 69 77 3bitr2i b T a a T b c A b c S a c a c S b c d A d R c b d = a d
79 63 78 sylibr φ a U b U a b b T a a T b
80 79 expr φ a U b U a b b T a a T b
81 12 80 syl5bir φ a U b U ¬ a = b b T a a T b
82 81 orrd φ a U b U a = b b T a a T b
83 3orrot a T b a = b b T a a = b b T a a T b
84 3orass a = b b T a a T b a = b b T a a T b
85 83 84 bitr2i a = b b T a a T b a T b a = b b T a
86 82 85 sylib φ a U b U a T b a = b b T a
87 11 86 issod φ T Or U