Metamath Proof Explorer


Theorem wemaplem1

Description: Value of the lexicographic order on a sequence space. (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypothesis wemapso.t T = x y | z A x z S y z w A w R z x w = y w
Assertion wemaplem1 P V Q W P T Q a A P a S Q a b A b R a P b = Q b

Proof

Step Hyp Ref Expression
1 wemapso.t T = x y | z A x z S y z w A w R z x w = y w
2 fveq1 x = P x z = P z
3 fveq1 y = Q y z = Q z
4 2 3 breqan12d x = P y = Q x z S y z P z S Q z
5 fveq1 x = P x w = P w
6 fveq1 y = Q y w = Q w
7 5 6 eqeqan12d x = P y = Q x w = y w P w = Q w
8 7 imbi2d x = P y = Q w R z x w = y w w R z P w = Q w
9 8 ralbidv x = P y = Q w A w R z x w = y w w A w R z P w = Q w
10 4 9 anbi12d x = P y = Q x z S y z w A w R z x w = y w P z S Q z w A w R z P w = Q w
11 10 rexbidv x = P y = Q z A x z S y z w A w R z x w = y w z A P z S Q z w A w R z P w = Q w
12 fveq2 z = a P z = P a
13 fveq2 z = a Q z = Q a
14 12 13 breq12d z = a P z S Q z P a S Q a
15 breq2 z = a w R z w R a
16 15 imbi1d z = a w R z P w = Q w w R a P w = Q w
17 16 ralbidv z = a w A w R z P w = Q w w A w R a P w = Q w
18 breq1 w = b w R a b R a
19 fveq2 w = b P w = P b
20 fveq2 w = b Q w = Q b
21 19 20 eqeq12d w = b P w = Q w P b = Q b
22 18 21 imbi12d w = b w R a P w = Q w b R a P b = Q b
23 22 cbvralvw w A w R a P w = Q w b A b R a P b = Q b
24 17 23 bitrdi z = a w A w R z P w = Q w b A b R a P b = Q b
25 14 24 anbi12d z = a P z S Q z w A w R z P w = Q w P a S Q a b A b R a P b = Q b
26 25 cbvrexvw z A P z S Q z w A w R z P w = Q w a A P a S Q a b A b R a P b = Q b
27 11 26 bitrdi x = P y = Q z A x z S y z w A w R z x w = y w a A P a S Q a b A b R a P b = Q b
28 27 1 brabga P V Q W P T Q a A P a S Q a b A b R a P b = Q b