Metamath Proof Explorer


Theorem wemaplem2

Description: Lemma for wemapso . Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015) (Revised by AV, 21-Jul-2024)

Ref Expression
Hypotheses wemapso.t T=xy|zAxzSyzwAwRzxw=yw
wemaplem2.p φPBA
wemaplem2.x φXBA
wemaplem2.q φQBA
wemaplem2.r φROrA
wemaplem2.s φSPoB
wemaplem2.px1 φaA
wemaplem2.px2 φPaSXa
wemaplem2.px3 φcAcRaPc=Xc
wemaplem2.xq1 φbA
wemaplem2.xq2 φXbSQb
wemaplem2.xq3 φcAcRbXc=Qc
Assertion wemaplem2 φPTQ

Proof

Step Hyp Ref Expression
1 wemapso.t T=xy|zAxzSyzwAwRzxw=yw
2 wemaplem2.p φPBA
3 wemaplem2.x φXBA
4 wemaplem2.q φQBA
5 wemaplem2.r φROrA
6 wemaplem2.s φSPoB
7 wemaplem2.px1 φaA
8 wemaplem2.px2 φPaSXa
9 wemaplem2.px3 φcAcRaPc=Xc
10 wemaplem2.xq1 φbA
11 wemaplem2.xq2 φXbSQb
12 wemaplem2.xq3 φcAcRbXc=Qc
13 7 10 ifcld φifaRbabA
14 8 adantr φaRbPaSXa
15 breq1 c=acRbaRb
16 fveq2 c=aXc=Xa
17 fveq2 c=aQc=Qa
18 16 17 eqeq12d c=aXc=QcXa=Qa
19 15 18 imbi12d c=acRbXc=QcaRbXa=Qa
20 19 12 7 rspcdva φaRbXa=Qa
21 20 imp φaRbXa=Qa
22 14 21 breqtrd φaRbPaSQa
23 iftrue aRbifaRbab=a
24 23 fveq2d aRbPifaRbab=Pa
25 23 fveq2d aRbQifaRbab=Qa
26 24 25 breq12d aRbPifaRbabSQifaRbabPaSQa
27 26 adantl φaRbPifaRbabSQifaRbabPaSQa
28 22 27 mpbird φaRbPifaRbabSQifaRbab
29 6 adantr φa=bSPoB
30 elmapi PBAP:AB
31 2 30 syl φP:AB
32 31 10 ffvelcdmd φPbB
33 elmapi XBAX:AB
34 3 33 syl φX:AB
35 34 10 ffvelcdmd φXbB
36 elmapi QBAQ:AB
37 4 36 syl φQ:AB
38 37 10 ffvelcdmd φQbB
39 32 35 38 3jca φPbBXbBQbB
40 39 adantr φa=bPbBXbBQbB
41 fveq2 a=bPa=Pb
42 fveq2 a=bXa=Xb
43 41 42 breq12d a=bPaSXaPbSXb
44 8 43 syl5ibcom φa=bPbSXb
45 44 imp φa=bPbSXb
46 11 adantr φa=bXbSQb
47 potr SPoBPbBXbBQbBPbSXbXbSQbPbSQb
48 47 imp SPoBPbBXbBQbBPbSXbXbSQbPbSQb
49 29 40 45 46 48 syl22anc φa=bPbSQb
50 ifeq1 a=bifaRbab=ifaRbbb
51 ifid ifaRbbb=b
52 50 51 eqtrdi a=bifaRbab=b
53 52 fveq2d a=bPifaRbab=Pb
54 52 fveq2d a=bQifaRbab=Qb
55 53 54 breq12d a=bPifaRbabSQifaRbabPbSQb
56 55 adantl φa=bPifaRbabSQifaRbabPbSQb
57 49 56 mpbird φa=bPifaRbabSQifaRbab
58 breq1 c=bcRabRa
59 fveq2 c=bPc=Pb
60 fveq2 c=bXc=Xb
61 59 60 eqeq12d c=bPc=XcPb=Xb
62 58 61 imbi12d c=bcRaPc=XcbRaPb=Xb
63 62 9 10 rspcdva φbRaPb=Xb
64 63 imp φbRaPb=Xb
65 11 adantr φbRaXbSQb
66 64 65 eqbrtrd φbRaPbSQb
67 sopo ROrARPoA
68 5 67 syl φRPoA
69 po2nr RPoAbAaA¬bRaaRb
70 68 10 7 69 syl12anc φ¬bRaaRb
71 nan φ¬bRaaRbφbRa¬aRb
72 70 71 mpbi φbRa¬aRb
73 iffalse ¬aRbifaRbab=b
74 73 fveq2d ¬aRbPifaRbab=Pb
75 73 fveq2d ¬aRbQifaRbab=Qb
76 74 75 breq12d ¬aRbPifaRbabSQifaRbabPbSQb
77 72 76 syl φbRaPifaRbabSQifaRbabPbSQb
78 66 77 mpbird φbRaPifaRbabSQifaRbab
79 solin ROrAaAbAaRba=bbRa
80 5 7 10 79 syl12anc φaRba=bbRa
81 28 57 78 80 mpjao3dan φPifaRbabSQifaRbab
82 r19.26 cAcRaPc=XccRbXc=QccAcRaPc=XccAcRbXc=Qc
83 9 12 82 sylanbrc φcAcRaPc=XccRbXc=Qc
84 5 7 10 3jca φROrAaAbA
85 anim12 cRaPc=XccRbXc=QccRacRbPc=XcXc=Qc
86 eqtr Pc=XcXc=QcPc=Qc
87 85 86 syl6 cRaPc=XccRbXc=QccRacRbPc=Qc
88 87 ralimi cAcRaPc=XccRbXc=QccAcRacRbPc=Qc
89 simpl1 ROrAaAbAcAROrA
90 simpr ROrAaAbAcAcA
91 simpl2 ROrAaAbAcAaA
92 simpl3 ROrAaAbAcAbA
93 soltmin ROrAcAaAbAcRifaRbabcRacRb
94 89 90 91 92 93 syl13anc ROrAaAbAcAcRifaRbabcRacRb
95 94 biimpd ROrAaAbAcAcRifaRbabcRacRb
96 95 imim1d ROrAaAbAcAcRacRbPc=QccRifaRbabPc=Qc
97 96 ralimdva ROrAaAbAcAcRacRbPc=QccAcRifaRbabPc=Qc
98 84 88 97 syl2im φcAcRaPc=XccRbXc=QccAcRifaRbabPc=Qc
99 83 98 mpd φcAcRifaRbabPc=Qc
100 fveq2 d=ifaRbabPd=PifaRbab
101 fveq2 d=ifaRbabQd=QifaRbab
102 100 101 breq12d d=ifaRbabPdSQdPifaRbabSQifaRbab
103 breq2 d=ifaRbabcRdcRifaRbab
104 103 imbi1d d=ifaRbabcRdPc=QccRifaRbabPc=Qc
105 104 ralbidv d=ifaRbabcAcRdPc=QccAcRifaRbabPc=Qc
106 102 105 anbi12d d=ifaRbabPdSQdcAcRdPc=QcPifaRbabSQifaRbabcAcRifaRbabPc=Qc
107 106 rspcev ifaRbabAPifaRbabSQifaRbabcAcRifaRbabPc=QcdAPdSQdcAcRdPc=Qc
108 13 81 99 107 syl12anc φdAPdSQdcAcRdPc=Qc
109 1 wemaplem1 PBAQBAPTQdAPdSQdcAcRdPc=Qc
110 2 4 109 syl2anc φPTQdAPdSQdcAcRdPc=Qc
111 108 110 mpbird φPTQ