Metamath Proof Explorer


Theorem soltmin

Description: Being less than a minimum, for a general total order. (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion soltmin R Or X A X B X C X A R if B R C B C A R B A R C

Proof

Step Hyp Ref Expression
1 sopo R Or X R Po X
2 1 ad2antrr R Or X A X B X C X A R if B R C B C R Po X
3 simplr1 R Or X A X B X C X A R if B R C B C A X
4 simplr2 R Or X A X B X C X A R if B R C B C B X
5 simplr3 R Or X A X B X C X A R if B R C B C C X
6 4 5 ifcld R Or X A X B X C X A R if B R C B C if B R C B C X
7 3 6 4 3jca R Or X A X B X C X A R if B R C B C A X if B R C B C X B X
8 simpr R Or X A X B X C X A R if B R C B C A R if B R C B C
9 simpll R Or X A X B X C X A R if B R C B C R Or X
10 somin1 R Or X B X C X if B R C B C R I B
11 9 4 5 10 syl12anc R Or X A X B X C X A R if B R C B C if B R C B C R I B
12 poltletr R Po X A X if B R C B C X B X A R if B R C B C if B R C B C R I B A R B
13 12 imp R Po X A X if B R C B C X B X A R if B R C B C if B R C B C R I B A R B
14 2 7 8 11 13 syl22anc R Or X A X B X C X A R if B R C B C A R B
15 3 6 5 3jca R Or X A X B X C X A R if B R C B C A X if B R C B C X C X
16 somin2 R Or X B X C X if B R C B C R I C
17 9 4 5 16 syl12anc R Or X A X B X C X A R if B R C B C if B R C B C R I C
18 poltletr R Po X A X if B R C B C X C X A R if B R C B C if B R C B C R I C A R C
19 18 imp R Po X A X if B R C B C X C X A R if B R C B C if B R C B C R I C A R C
20 2 15 8 17 19 syl22anc R Or X A X B X C X A R if B R C B C A R C
21 14 20 jca R Or X A X B X C X A R if B R C B C A R B A R C
22 21 ex R Or X A X B X C X A R if B R C B C A R B A R C
23 breq2 B = if B R C B C A R B A R if B R C B C
24 breq2 C = if B R C B C A R C A R if B R C B C
25 23 24 ifboth A R B A R C A R if B R C B C
26 22 25 impbid1 R Or X A X B X C X A R if B R C B C A R B A R C