Metamath Proof Explorer


Theorem soltmin

Description: Being less than a minimum, for a general total order. (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion soltmin ROrXAXBXCXARifBRCBCARBARC

Proof

Step Hyp Ref Expression
1 sopo ROrXRPoX
2 1 ad2antrr ROrXAXBXCXARifBRCBCRPoX
3 simplr1 ROrXAXBXCXARifBRCBCAX
4 simplr2 ROrXAXBXCXARifBRCBCBX
5 simplr3 ROrXAXBXCXARifBRCBCCX
6 4 5 ifcld ROrXAXBXCXARifBRCBCifBRCBCX
7 3 6 4 3jca ROrXAXBXCXARifBRCBCAXifBRCBCXBX
8 simpr ROrXAXBXCXARifBRCBCARifBRCBC
9 simpll ROrXAXBXCXARifBRCBCROrX
10 somin1 ROrXBXCXifBRCBCRIB
11 9 4 5 10 syl12anc ROrXAXBXCXARifBRCBCifBRCBCRIB
12 poltletr RPoXAXifBRCBCXBXARifBRCBCifBRCBCRIBARB
13 12 imp RPoXAXifBRCBCXBXARifBRCBCifBRCBCRIBARB
14 2 7 8 11 13 syl22anc ROrXAXBXCXARifBRCBCARB
15 3 6 5 3jca ROrXAXBXCXARifBRCBCAXifBRCBCXCX
16 somin2 ROrXBXCXifBRCBCRIC
17 9 4 5 16 syl12anc ROrXAXBXCXARifBRCBCifBRCBCRIC
18 poltletr RPoXAXifBRCBCXCXARifBRCBCifBRCBCRICARC
19 18 imp RPoXAXifBRCBCXCXARifBRCBCifBRCBCRICARC
20 2 15 8 17 19 syl22anc ROrXAXBXCXARifBRCBCARC
21 14 20 jca ROrXAXBXCXARifBRCBCARBARC
22 21 ex ROrXAXBXCXARifBRCBCARBARC
23 breq2 B=ifBRCBCARBARifBRCBC
24 breq2 C=ifBRCBCARCARifBRCBC
25 23 24 ifboth ARBARCARifBRCBC
26 22 25 impbid1 ROrXAXBXCXARifBRCBCARBARC