Metamath Proof Explorer


Theorem wemaplem3

Description: Lemma for wemapso . Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015) (Revised by AV, 21-Jul-2024)

Ref Expression
Hypotheses wemapso.t T = x y | z A x z S y z w A w R z x w = y w
wemaplem2.p φ P B A
wemaplem2.x φ X B A
wemaplem2.q φ Q B A
wemaplem2.r φ R Or A
wemaplem2.s φ S Po B
wemaplem3.px φ P T X
wemaplem3.xq φ X T Q
Assertion wemaplem3 φ P T Q

Proof

Step Hyp Ref Expression
1 wemapso.t T = x y | z A x z S y z w A w R z x w = y w
2 wemaplem2.p φ P B A
3 wemaplem2.x φ X B A
4 wemaplem2.q φ Q B A
5 wemaplem2.r φ R Or A
6 wemaplem2.s φ S Po B
7 wemaplem3.px φ P T X
8 wemaplem3.xq φ X T Q
9 1 wemaplem1 P B A X B A P T X a A P a S X a c A c R a P c = X c
10 2 3 9 syl2anc φ P T X a A P a S X a c A c R a P c = X c
11 7 10 mpbid φ a A P a S X a c A c R a P c = X c
12 1 wemaplem1 X B A Q B A X T Q b A X b S Q b c A c R b X c = Q c
13 3 4 12 syl2anc φ X T Q b A X b S Q b c A c R b X c = Q c
14 8 13 mpbid φ b A X b S Q b c A c R b X c = Q c
15 2 ad2antrr φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c P B A
16 3 ad2antrr φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c X B A
17 4 ad2antrr φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c Q B A
18 5 ad2antrr φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c R Or A
19 6 ad2antrr φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c S Po B
20 simplrl φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c a A
21 simp2rl φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c P a S X a
22 21 3expa φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c P a S X a
23 simprr a A P a S X a c A c R a P c = X c c A c R a P c = X c
24 23 ad2antlr φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c c A c R a P c = X c
25 simprl φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c b A
26 simprrl φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c X b S Q b
27 simprrr φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c c A c R b X c = Q c
28 1 15 16 17 18 19 20 22 24 25 26 27 wemaplem2 φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c P T Q
29 28 rexlimdvaa φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c P T Q
30 29 rexlimdvaa φ a A P a S X a c A c R a P c = X c b A X b S Q b c A c R b X c = Q c P T Q
31 11 14 30 mp2d φ P T Q