Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | opwo0id | |- <. X , Y >. = ( <. X , Y >. \ { (/) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelop | |- -. (/) e. <. X , Y >. |
|
2 | disjsn | |- ( ( <. X , Y >. i^i { (/) } ) = (/) <-> -. (/) e. <. X , Y >. ) |
|
3 | 1 2 | mpbir | |- ( <. X , Y >. i^i { (/) } ) = (/) |
4 | disjdif2 | |- ( ( <. X , Y >. i^i { (/) } ) = (/) -> ( <. X , Y >. \ { (/) } ) = <. X , Y >. ) |
|
5 | 3 4 | ax-mp | |- ( <. X , Y >. \ { (/) } ) = <. X , Y >. |
6 | 5 | eqcomi | |- <. X , Y >. = ( <. X , Y >. \ { (/) } ) |