Metamath Proof Explorer


Theorem opwo0id

Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021)

Ref Expression
Assertion opwo0id
|- <. X , Y >. = ( <. X , Y >. \ { (/) } )

Proof

Step Hyp Ref Expression
1 0nelop
 |-  -. (/) e. <. X , Y >.
2 disjsn
 |-  ( ( <. X , Y >. i^i { (/) } ) = (/) <-> -. (/) e. <. X , Y >. )
3 1 2 mpbir
 |-  ( <. X , Y >. i^i { (/) } ) = (/)
4 disjdif2
 |-  ( ( <. X , Y >. i^i { (/) } ) = (/) -> ( <. X , Y >. \ { (/) } ) = <. X , Y >. )
5 3 4 ax-mp
 |-  ( <. X , Y >. \ { (/) } ) = <. X , Y >.
6 5 eqcomi
 |-  <. X , Y >. = ( <. X , Y >. \ { (/) } )