Metamath Proof Explorer


Theorem 0nelop

Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion 0nelop
|- -. (/) e. <. A , B >.

Proof

Step Hyp Ref Expression
1 id
 |-  ( (/) e. <. A , B >. -> (/) e. <. A , B >. )
2 oprcl
 |-  ( (/) e. <. A , B >. -> ( A e. _V /\ B e. _V ) )
3 dfopg
 |-  ( ( A e. _V /\ B e. _V ) -> <. A , B >. = { { A } , { A , B } } )
4 2 3 syl
 |-  ( (/) e. <. A , B >. -> <. A , B >. = { { A } , { A , B } } )
5 1 4 eleqtrd
 |-  ( (/) e. <. A , B >. -> (/) e. { { A } , { A , B } } )
6 elpri
 |-  ( (/) e. { { A } , { A , B } } -> ( (/) = { A } \/ (/) = { A , B } ) )
7 5 6 syl
 |-  ( (/) e. <. A , B >. -> ( (/) = { A } \/ (/) = { A , B } ) )
8 2 simpld
 |-  ( (/) e. <. A , B >. -> A e. _V )
9 snnzg
 |-  ( A e. _V -> { A } =/= (/) )
10 8 9 syl
 |-  ( (/) e. <. A , B >. -> { A } =/= (/) )
11 10 necomd
 |-  ( (/) e. <. A , B >. -> (/) =/= { A } )
12 prnzg
 |-  ( A e. _V -> { A , B } =/= (/) )
13 8 12 syl
 |-  ( (/) e. <. A , B >. -> { A , B } =/= (/) )
14 13 necomd
 |-  ( (/) e. <. A , B >. -> (/) =/= { A , B } )
15 11 14 jca
 |-  ( (/) e. <. A , B >. -> ( (/) =/= { A } /\ (/) =/= { A , B } ) )
16 neanior
 |-  ( ( (/) =/= { A } /\ (/) =/= { A , B } ) <-> -. ( (/) = { A } \/ (/) = { A , B } ) )
17 15 16 sylib
 |-  ( (/) e. <. A , B >. -> -. ( (/) = { A } \/ (/) = { A , B } ) )
18 7 17 pm2.65i
 |-  -. (/) e. <. A , B >.