| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							id | 
							 |-  ( (/) e. <. A , B >. -> (/) e. <. A , B >. )  | 
						
						
							| 2 | 
							
								
							 | 
							oprcl | 
							 |-  ( (/) e. <. A , B >. -> ( A e. _V /\ B e. _V ) )  | 
						
						
							| 3 | 
							
								
							 | 
							dfopg | 
							 |-  ( ( A e. _V /\ B e. _V ) -> <. A , B >. = { { A } , { A , B } } ) | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl | 
							 |-  ( (/) e. <. A , B >. -> <. A , B >. = { { A } , { A , B } } ) | 
						
						
							| 5 | 
							
								1 4
							 | 
							eleqtrd | 
							 |-  ( (/) e. <. A , B >. -> (/) e. { { A } , { A , B } } ) | 
						
						
							| 6 | 
							
								
							 | 
							elpri | 
							 |-  ( (/) e. { { A } , { A , B } } -> ( (/) = { A } \/ (/) = { A , B } ) ) | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							 |-  ( (/) e. <. A , B >. -> ( (/) = { A } \/ (/) = { A , B } ) ) | 
						
						
							| 8 | 
							
								2
							 | 
							simpld | 
							 |-  ( (/) e. <. A , B >. -> A e. _V )  | 
						
						
							| 9 | 
							
								8
							 | 
							snn0d | 
							 |-  ( (/) e. <. A , B >. -> { A } =/= (/) ) | 
						
						
							| 10 | 
							
								9
							 | 
							necomd | 
							 |-  ( (/) e. <. A , B >. -> (/) =/= { A } ) | 
						
						
							| 11 | 
							
								
							 | 
							prnzg | 
							 |-  ( A e. _V -> { A , B } =/= (/) ) | 
						
						
							| 12 | 
							
								8 11
							 | 
							syl | 
							 |-  ( (/) e. <. A , B >. -> { A , B } =/= (/) ) | 
						
						
							| 13 | 
							
								12
							 | 
							necomd | 
							 |-  ( (/) e. <. A , B >. -> (/) =/= { A , B } ) | 
						
						
							| 14 | 
							
								10 13
							 | 
							jca | 
							 |-  ( (/) e. <. A , B >. -> ( (/) =/= { A } /\ (/) =/= { A , B } ) ) | 
						
						
							| 15 | 
							
								
							 | 
							neanior | 
							 |-  ( ( (/) =/= { A } /\ (/) =/= { A , B } ) <-> -. ( (/) = { A } \/ (/) = { A , B } ) ) | 
						
						
							| 16 | 
							
								14 15
							 | 
							sylib | 
							 |-  ( (/) e. <. A , B >. -> -. ( (/) = { A } \/ (/) = { A , B } ) ) | 
						
						
							| 17 | 
							
								7 16
							 | 
							pm2.65i | 
							 |-  -. (/) e. <. A , B >.  |