Metamath Proof Explorer


Theorem 0nelop

Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion 0nelop ¬ ∅ ∈ ⟨ 𝐴 , 𝐵

Proof

Step Hyp Ref Expression
1 id ( ∅ ∈ ⟨ 𝐴 , 𝐵 ⟩ → ∅ ∈ ⟨ 𝐴 , 𝐵 ⟩ )
2 oprcl ( ∅ ∈ ⟨ 𝐴 , 𝐵 ⟩ → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
3 dfopg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ⟨ 𝐴 , 𝐵 ⟩ = { { 𝐴 } , { 𝐴 , 𝐵 } } )
4 2 3 syl ( ∅ ∈ ⟨ 𝐴 , 𝐵 ⟩ → ⟨ 𝐴 , 𝐵 ⟩ = { { 𝐴 } , { 𝐴 , 𝐵 } } )
5 1 4 eleqtrd ( ∅ ∈ ⟨ 𝐴 , 𝐵 ⟩ → ∅ ∈ { { 𝐴 } , { 𝐴 , 𝐵 } } )
6 elpri ( ∅ ∈ { { 𝐴 } , { 𝐴 , 𝐵 } } → ( ∅ = { 𝐴 } ∨ ∅ = { 𝐴 , 𝐵 } ) )
7 5 6 syl ( ∅ ∈ ⟨ 𝐴 , 𝐵 ⟩ → ( ∅ = { 𝐴 } ∨ ∅ = { 𝐴 , 𝐵 } ) )
8 2 simpld ( ∅ ∈ ⟨ 𝐴 , 𝐵 ⟩ → 𝐴 ∈ V )
9 snnzg ( 𝐴 ∈ V → { 𝐴 } ≠ ∅ )
10 8 9 syl ( ∅ ∈ ⟨ 𝐴 , 𝐵 ⟩ → { 𝐴 } ≠ ∅ )
11 10 necomd ( ∅ ∈ ⟨ 𝐴 , 𝐵 ⟩ → ∅ ≠ { 𝐴 } )
12 prnzg ( 𝐴 ∈ V → { 𝐴 , 𝐵 } ≠ ∅ )
13 8 12 syl ( ∅ ∈ ⟨ 𝐴 , 𝐵 ⟩ → { 𝐴 , 𝐵 } ≠ ∅ )
14 13 necomd ( ∅ ∈ ⟨ 𝐴 , 𝐵 ⟩ → ∅ ≠ { 𝐴 , 𝐵 } )
15 11 14 jca ( ∅ ∈ ⟨ 𝐴 , 𝐵 ⟩ → ( ∅ ≠ { 𝐴 } ∧ ∅ ≠ { 𝐴 , 𝐵 } ) )
16 neanior ( ( ∅ ≠ { 𝐴 } ∧ ∅ ≠ { 𝐴 , 𝐵 } ) ↔ ¬ ( ∅ = { 𝐴 } ∨ ∅ = { 𝐴 , 𝐵 } ) )
17 15 16 sylib ( ∅ ∈ ⟨ 𝐴 , 𝐵 ⟩ → ¬ ( ∅ = { 𝐴 } ∨ ∅ = { 𝐴 , 𝐵 } ) )
18 7 17 pm2.65i ¬ ∅ ∈ ⟨ 𝐴 , 𝐵