Metamath Proof Explorer


Theorem opwo0id

Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021)

Ref Expression
Assertion opwo0id XY=XY

Proof

Step Hyp Ref Expression
1 0nelop ¬XY
2 disjsn XY=¬XY
3 1 2 mpbir XY=
4 disjdif2 XY=XY=XY
5 3 4 ax-mp XY=XY
6 5 eqcomi XY=XY