Description: Orbits exist. Given a set A and a function F , the orbit of A under F is the smallest set Z such that A e. Z and Z is closed under F . (Contributed by Eric Schmidt, 6-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orbitex | |- ( rec ( F , A ) " _om ) e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun | |- Fun rec ( F , A ) |
|
| 2 | omex | |- _om e. _V |
|
| 3 | 2 | funimaex | |- ( Fun rec ( F , A ) -> ( rec ( F , A ) " _om ) e. _V ) |
| 4 | 1 3 | ax-mp | |- ( rec ( F , A ) " _om ) e. _V |