| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fr0g |
|- ( A e. V -> ( ( rec ( F , A ) |` _om ) ` (/) ) = A ) |
| 2 |
|
frfnom |
|- ( rec ( F , A ) |` _om ) Fn _om |
| 3 |
|
peano1 |
|- (/) e. _om |
| 4 |
|
fnfvelrn |
|- ( ( ( rec ( F , A ) |` _om ) Fn _om /\ (/) e. _om ) -> ( ( rec ( F , A ) |` _om ) ` (/) ) e. ran ( rec ( F , A ) |` _om ) ) |
| 5 |
2 3 4
|
mp2an |
|- ( ( rec ( F , A ) |` _om ) ` (/) ) e. ran ( rec ( F , A ) |` _om ) |
| 6 |
1 5
|
eqeltrrdi |
|- ( A e. V -> A e. ran ( rec ( F , A ) |` _om ) ) |
| 7 |
|
df-ima |
|- ( rec ( F , A ) " _om ) = ran ( rec ( F , A ) |` _om ) |
| 8 |
6 7
|
eleqtrrdi |
|- ( A e. V -> A e. ( rec ( F , A ) " _om ) ) |