Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Eric Schmidt
Orbits
orbitinit
Next ⟩
orbitcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
orbitinit
Description:
A set is contained in its orbit.
(Contributed by
Eric Schmidt
, 6-Nov-2025)
Ref
Expression
Assertion
orbitinit
⊢
A
∈
V
→
A
∈
rec
⁡
F
A
ω
Proof
Step
Hyp
Ref
Expression
1
fr0g
⊢
A
∈
V
→
rec
⁡
F
A
↾
ω
⁡
∅
=
A
2
frfnom
⊢
rec
⁡
F
A
↾
ω
Fn
ω
3
peano1
⊢
∅
∈
ω
4
fnfvelrn
⊢
rec
⁡
F
A
↾
ω
Fn
ω
∧
∅
∈
ω
→
rec
⁡
F
A
↾
ω
⁡
∅
∈
ran
⁡
rec
⁡
F
A
↾
ω
5
2
3
4
mp2an
⊢
rec
⁡
F
A
↾
ω
⁡
∅
∈
ran
⁡
rec
⁡
F
A
↾
ω
6
1
5
eqeltrrdi
⊢
A
∈
V
→
A
∈
ran
⁡
rec
⁡
F
A
↾
ω
7
df-ima
⊢
rec
⁡
F
A
ω
=
ran
⁡
rec
⁡
F
A
↾
ω
8
6
7
eleqtrrdi
⊢
A
∈
V
→
A
∈
rec
⁡
F
A
ω