| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
|- RR C_ RR |
| 2 |
|
ovolcl |
|- ( RR C_ RR -> ( vol* ` RR ) e. RR* ) |
| 3 |
1 2
|
ax-mp |
|- ( vol* ` RR ) e. RR* |
| 4 |
|
pnfge |
|- ( ( vol* ` RR ) e. RR* -> ( vol* ` RR ) <_ +oo ) |
| 5 |
3 4
|
ax-mp |
|- ( vol* ` RR ) <_ +oo |
| 6 |
|
0re |
|- 0 e. RR |
| 7 |
|
ovolicopnf |
|- ( 0 e. RR -> ( vol* ` ( 0 [,) +oo ) ) = +oo ) |
| 8 |
6 7
|
ax-mp |
|- ( vol* ` ( 0 [,) +oo ) ) = +oo |
| 9 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 10 |
|
ovolss |
|- ( ( ( 0 [,) +oo ) C_ RR /\ RR C_ RR ) -> ( vol* ` ( 0 [,) +oo ) ) <_ ( vol* ` RR ) ) |
| 11 |
9 1 10
|
mp2an |
|- ( vol* ` ( 0 [,) +oo ) ) <_ ( vol* ` RR ) |
| 12 |
8 11
|
eqbrtrri |
|- +oo <_ ( vol* ` RR ) |
| 13 |
|
pnfxr |
|- +oo e. RR* |
| 14 |
|
xrletri3 |
|- ( ( ( vol* ` RR ) e. RR* /\ +oo e. RR* ) -> ( ( vol* ` RR ) = +oo <-> ( ( vol* ` RR ) <_ +oo /\ +oo <_ ( vol* ` RR ) ) ) ) |
| 15 |
3 13 14
|
mp2an |
|- ( ( vol* ` RR ) = +oo <-> ( ( vol* ` RR ) <_ +oo /\ +oo <_ ( vol* ` RR ) ) ) |
| 16 |
5 12 15
|
mpbir2an |
|- ( vol* ` RR ) = +oo |