Metamath Proof Explorer


Theorem pclidN

Description: The projective subspace closure of a projective subspace is itself. (Contributed by NM, 8-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclid.s
|- S = ( PSubSp ` K )
pclid.c
|- U = ( PCl ` K )
Assertion pclidN
|- ( ( K e. V /\ X e. S ) -> ( U ` X ) = X )

Proof

Step Hyp Ref Expression
1 pclid.s
 |-  S = ( PSubSp ` K )
2 pclid.c
 |-  U = ( PCl ` K )
3 eqid
 |-  ( Atoms ` K ) = ( Atoms ` K )
4 3 1 psubssat
 |-  ( ( K e. V /\ X e. S ) -> X C_ ( Atoms ` K ) )
5 3 1 2 pclvalN
 |-  ( ( K e. V /\ X C_ ( Atoms ` K ) ) -> ( U ` X ) = |^| { y e. S | X C_ y } )
6 4 5 syldan
 |-  ( ( K e. V /\ X e. S ) -> ( U ` X ) = |^| { y e. S | X C_ y } )
7 intmin
 |-  ( X e. S -> |^| { y e. S | X C_ y } = X )
8 7 adantl
 |-  ( ( K e. V /\ X e. S ) -> |^| { y e. S | X C_ y } = X )
9 6 8 eqtrd
 |-  ( ( K e. V /\ X e. S ) -> ( U ` X ) = X )