Metamath Proof Explorer


Theorem pclidN

Description: The projective subspace closure of a projective subspace is itself. (Contributed by NM, 8-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclid.s S=PSubSpK
pclid.c U=PClK
Assertion pclidN KVXSUX=X

Proof

Step Hyp Ref Expression
1 pclid.s S=PSubSpK
2 pclid.c U=PClK
3 eqid AtomsK=AtomsK
4 3 1 psubssat KVXSXAtomsK
5 3 1 2 pclvalN KVXAtomsKUX=yS|Xy
6 4 5 syldan KVXSUX=yS|Xy
7 intmin XSyS|Xy=X
8 7 adantl KVXSyS|Xy=X
9 6 8 eqtrd KVXSUX=X