| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfznn0 |  |-  ( N e. ( 0 ... ( # ` W ) ) -> N e. NN0 ) | 
						
							| 2 | 1 | 3ad2ant2 |  |-  ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> N e. NN0 ) | 
						
							| 3 |  | 0elfz |  |-  ( N e. NN0 -> 0 e. ( 0 ... N ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> 0 e. ( 0 ... N ) ) | 
						
							| 5 |  | simp2 |  |-  ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> N e. ( 0 ... ( # ` W ) ) ) | 
						
							| 6 | 4 5 | jca |  |-  ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( 0 e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) ) | 
						
							| 7 |  | swrdco |  |-  ( ( W e. Word A /\ ( 0 e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> ( F o. ( W substr <. 0 , N >. ) ) = ( ( F o. W ) substr <. 0 , N >. ) ) | 
						
							| 8 | 6 7 | syld3an2 |  |-  ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( F o. ( W substr <. 0 , N >. ) ) = ( ( F o. W ) substr <. 0 , N >. ) ) | 
						
							| 9 |  | pfxval |  |-  ( ( W e. Word A /\ N e. NN0 ) -> ( W prefix N ) = ( W substr <. 0 , N >. ) ) | 
						
							| 10 | 1 9 | sylan2 |  |-  ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W prefix N ) = ( W substr <. 0 , N >. ) ) | 
						
							| 11 | 10 | coeq2d |  |-  ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) ) -> ( F o. ( W prefix N ) ) = ( F o. ( W substr <. 0 , N >. ) ) ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( F o. ( W prefix N ) ) = ( F o. ( W substr <. 0 , N >. ) ) ) | 
						
							| 13 |  | ffun |  |-  ( F : A --> B -> Fun F ) | 
						
							| 14 | 13 | anim2i |  |-  ( ( W e. Word A /\ F : A --> B ) -> ( W e. Word A /\ Fun F ) ) | 
						
							| 15 | 14 | ancomd |  |-  ( ( W e. Word A /\ F : A --> B ) -> ( Fun F /\ W e. Word A ) ) | 
						
							| 16 | 15 | 3adant2 |  |-  ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( Fun F /\ W e. Word A ) ) | 
						
							| 17 |  | cofunexg |  |-  ( ( Fun F /\ W e. Word A ) -> ( F o. W ) e. _V ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( F o. W ) e. _V ) | 
						
							| 19 | 18 2 | jca |  |-  ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( ( F o. W ) e. _V /\ N e. NN0 ) ) | 
						
							| 20 |  | pfxval |  |-  ( ( ( F o. W ) e. _V /\ N e. NN0 ) -> ( ( F o. W ) prefix N ) = ( ( F o. W ) substr <. 0 , N >. ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( ( F o. W ) prefix N ) = ( ( F o. W ) substr <. 0 , N >. ) ) | 
						
							| 22 | 8 12 21 | 3eqtr4d |  |-  ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( F o. ( W prefix N ) ) = ( ( F o. W ) prefix N ) ) |