| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
| 2 |
1
|
3ad2ant3 |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> F Fn A ) |
| 3 |
|
swrdvalfn |
|- ( ( W e. Word A /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
| 4 |
3
|
3expb |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> ( W substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
| 5 |
4
|
3adant3 |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> ( W substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
| 6 |
|
swrdrn |
|- ( ( W e. Word A /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ran ( W substr <. M , N >. ) C_ A ) |
| 7 |
6
|
3expb |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> ran ( W substr <. M , N >. ) C_ A ) |
| 8 |
7
|
3adant3 |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> ran ( W substr <. M , N >. ) C_ A ) |
| 9 |
|
fnco |
|- ( ( F Fn A /\ ( W substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) /\ ran ( W substr <. M , N >. ) C_ A ) -> ( F o. ( W substr <. M , N >. ) ) Fn ( 0 ..^ ( N - M ) ) ) |
| 10 |
2 5 8 9
|
syl3anc |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> ( F o. ( W substr <. M , N >. ) ) Fn ( 0 ..^ ( N - M ) ) ) |
| 11 |
|
wrdco |
|- ( ( W e. Word A /\ F : A --> B ) -> ( F o. W ) e. Word B ) |
| 12 |
11
|
3adant2 |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> ( F o. W ) e. Word B ) |
| 13 |
|
simp2l |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> M e. ( 0 ... N ) ) |
| 14 |
|
lenco |
|- ( ( W e. Word A /\ F : A --> B ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) |
| 15 |
14
|
eqcomd |
|- ( ( W e. Word A /\ F : A --> B ) -> ( # ` W ) = ( # ` ( F o. W ) ) ) |
| 16 |
15
|
oveq2d |
|- ( ( W e. Word A /\ F : A --> B ) -> ( 0 ... ( # ` W ) ) = ( 0 ... ( # ` ( F o. W ) ) ) ) |
| 17 |
16
|
eleq2d |
|- ( ( W e. Word A /\ F : A --> B ) -> ( N e. ( 0 ... ( # ` W ) ) <-> N e. ( 0 ... ( # ` ( F o. W ) ) ) ) ) |
| 18 |
17
|
biimpd |
|- ( ( W e. Word A /\ F : A --> B ) -> ( N e. ( 0 ... ( # ` W ) ) -> N e. ( 0 ... ( # ` ( F o. W ) ) ) ) ) |
| 19 |
18
|
expcom |
|- ( F : A --> B -> ( W e. Word A -> ( N e. ( 0 ... ( # ` W ) ) -> N e. ( 0 ... ( # ` ( F o. W ) ) ) ) ) ) |
| 20 |
19
|
com13 |
|- ( N e. ( 0 ... ( # ` W ) ) -> ( W e. Word A -> ( F : A --> B -> N e. ( 0 ... ( # ` ( F o. W ) ) ) ) ) ) |
| 21 |
20
|
adantl |
|- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W e. Word A -> ( F : A --> B -> N e. ( 0 ... ( # ` ( F o. W ) ) ) ) ) ) |
| 22 |
21
|
3imp21 |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> N e. ( 0 ... ( # ` ( F o. W ) ) ) ) |
| 23 |
|
swrdvalfn |
|- ( ( ( F o. W ) e. Word B /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( F o. W ) ) ) ) -> ( ( F o. W ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
| 24 |
12 13 22 23
|
syl3anc |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> ( ( F o. W ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
| 25 |
|
3anass |
|- ( ( W e. Word A /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) <-> ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) ) ) |
| 26 |
25
|
biimpri |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> ( W e. Word A /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) ) |
| 27 |
26
|
3adant3 |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> ( W e. Word A /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) ) |
| 28 |
|
swrdfv |
|- ( ( ( W e. Word A /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ i e. ( 0 ..^ ( N - M ) ) ) -> ( ( W substr <. M , N >. ) ` i ) = ( W ` ( i + M ) ) ) |
| 29 |
28
|
fveq2d |
|- ( ( ( W e. Word A /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ i e. ( 0 ..^ ( N - M ) ) ) -> ( F ` ( ( W substr <. M , N >. ) ` i ) ) = ( F ` ( W ` ( i + M ) ) ) ) |
| 30 |
27 29
|
sylan |
|- ( ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) /\ i e. ( 0 ..^ ( N - M ) ) ) -> ( F ` ( ( W substr <. M , N >. ) ` i ) ) = ( F ` ( W ` ( i + M ) ) ) ) |
| 31 |
|
wrdfn |
|- ( W e. Word A -> W Fn ( 0 ..^ ( # ` W ) ) ) |
| 32 |
31
|
3ad2ant1 |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> W Fn ( 0 ..^ ( # ` W ) ) ) |
| 33 |
|
elfzodifsumelfzo |
|- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( i e. ( 0 ..^ ( N - M ) ) -> ( i + M ) e. ( 0 ..^ ( # ` W ) ) ) ) |
| 34 |
33
|
3ad2ant2 |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> ( i e. ( 0 ..^ ( N - M ) ) -> ( i + M ) e. ( 0 ..^ ( # ` W ) ) ) ) |
| 35 |
34
|
imp |
|- ( ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) /\ i e. ( 0 ..^ ( N - M ) ) ) -> ( i + M ) e. ( 0 ..^ ( # ` W ) ) ) |
| 36 |
|
fvco2 |
|- ( ( W Fn ( 0 ..^ ( # ` W ) ) /\ ( i + M ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( i + M ) ) = ( F ` ( W ` ( i + M ) ) ) ) |
| 37 |
32 35 36
|
syl2an2r |
|- ( ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) /\ i e. ( 0 ..^ ( N - M ) ) ) -> ( ( F o. W ) ` ( i + M ) ) = ( F ` ( W ` ( i + M ) ) ) ) |
| 38 |
30 37
|
eqtr4d |
|- ( ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) /\ i e. ( 0 ..^ ( N - M ) ) ) -> ( F ` ( ( W substr <. M , N >. ) ` i ) ) = ( ( F o. W ) ` ( i + M ) ) ) |
| 39 |
|
fvco2 |
|- ( ( ( W substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) /\ i e. ( 0 ..^ ( N - M ) ) ) -> ( ( F o. ( W substr <. M , N >. ) ) ` i ) = ( F ` ( ( W substr <. M , N >. ) ` i ) ) ) |
| 40 |
5 39
|
sylan |
|- ( ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) /\ i e. ( 0 ..^ ( N - M ) ) ) -> ( ( F o. ( W substr <. M , N >. ) ) ` i ) = ( F ` ( ( W substr <. M , N >. ) ` i ) ) ) |
| 41 |
14
|
ancoms |
|- ( ( F : A --> B /\ W e. Word A ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) |
| 42 |
41
|
eqcomd |
|- ( ( F : A --> B /\ W e. Word A ) -> ( # ` W ) = ( # ` ( F o. W ) ) ) |
| 43 |
42
|
oveq2d |
|- ( ( F : A --> B /\ W e. Word A ) -> ( 0 ... ( # ` W ) ) = ( 0 ... ( # ` ( F o. W ) ) ) ) |
| 44 |
43
|
eleq2d |
|- ( ( F : A --> B /\ W e. Word A ) -> ( N e. ( 0 ... ( # ` W ) ) <-> N e. ( 0 ... ( # ` ( F o. W ) ) ) ) ) |
| 45 |
44
|
biimpd |
|- ( ( F : A --> B /\ W e. Word A ) -> ( N e. ( 0 ... ( # ` W ) ) -> N e. ( 0 ... ( # ` ( F o. W ) ) ) ) ) |
| 46 |
45
|
ex |
|- ( F : A --> B -> ( W e. Word A -> ( N e. ( 0 ... ( # ` W ) ) -> N e. ( 0 ... ( # ` ( F o. W ) ) ) ) ) ) |
| 47 |
46
|
com13 |
|- ( N e. ( 0 ... ( # ` W ) ) -> ( W e. Word A -> ( F : A --> B -> N e. ( 0 ... ( # ` ( F o. W ) ) ) ) ) ) |
| 48 |
47
|
adantl |
|- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W e. Word A -> ( F : A --> B -> N e. ( 0 ... ( # ` ( F o. W ) ) ) ) ) ) |
| 49 |
48
|
3imp21 |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> N e. ( 0 ... ( # ` ( F o. W ) ) ) ) |
| 50 |
12 13 49
|
3jca |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> ( ( F o. W ) e. Word B /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( F o. W ) ) ) ) ) |
| 51 |
|
swrdfv |
|- ( ( ( ( F o. W ) e. Word B /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( F o. W ) ) ) ) /\ i e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( F o. W ) substr <. M , N >. ) ` i ) = ( ( F o. W ) ` ( i + M ) ) ) |
| 52 |
50 51
|
sylan |
|- ( ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) /\ i e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( F o. W ) substr <. M , N >. ) ` i ) = ( ( F o. W ) ` ( i + M ) ) ) |
| 53 |
38 40 52
|
3eqtr4d |
|- ( ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) /\ i e. ( 0 ..^ ( N - M ) ) ) -> ( ( F o. ( W substr <. M , N >. ) ) ` i ) = ( ( ( F o. W ) substr <. M , N >. ) ` i ) ) |
| 54 |
10 24 53
|
eqfnfvd |
|- ( ( W e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> ( F o. ( W substr <. M , N >. ) ) = ( ( F o. W ) substr <. M , N >. ) ) |