| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
| 2 |
1
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 Fn 𝐴 ) |
| 3 |
|
swrdvalfn |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
| 4 |
3
|
3expb |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
| 5 |
4
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
| 6 |
|
swrdrn |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ran ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ⊆ 𝐴 ) |
| 7 |
6
|
3expb |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → ran ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ⊆ 𝐴 ) |
| 8 |
7
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ran ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ⊆ 𝐴 ) |
| 9 |
|
fnco |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ∧ ran ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ⊆ 𝐴 ) → ( 𝐹 ∘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
| 10 |
2 5 8 9
|
syl3anc |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
| 11 |
|
wrdco |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ) |
| 12 |
11
|
3adant2 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ) |
| 13 |
|
simp2l |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
| 14 |
|
lenco |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 15 |
14
|
eqcomd |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) |
| 16 |
15
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 0 ... ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
| 17 |
16
|
eleq2d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
| 18 |
17
|
biimpd |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
| 19 |
18
|
expcom |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑊 ∈ Word 𝐴 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
| 20 |
19
|
com13 |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝐴 → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ∈ Word 𝐴 → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
| 22 |
21
|
3imp21 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
| 23 |
|
swrdvalfn |
⊢ ( ( ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) → ( ( 𝐹 ∘ 𝑊 ) substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
| 24 |
12 13 22 23
|
syl3anc |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝑊 ) substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
| 25 |
|
3anass |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 26 |
25
|
biimpri |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
| 27 |
26
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
| 28 |
|
swrdfv |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) = ( 𝑊 ‘ ( 𝑖 + 𝑀 ) ) ) |
| 29 |
28
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( 𝐹 ‘ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( 𝑖 + 𝑀 ) ) ) ) |
| 30 |
27 29
|
sylan |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( 𝐹 ‘ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( 𝑖 + 𝑀 ) ) ) ) |
| 31 |
|
wrdfn |
⊢ ( 𝑊 ∈ Word 𝐴 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 32 |
31
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 33 |
|
elfzodifsumelfzo |
⊢ ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝑖 + 𝑀 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 34 |
33
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝑖 + 𝑀 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 35 |
34
|
imp |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( 𝑖 + 𝑀 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 36 |
|
fvco2 |
⊢ ( ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑖 + 𝑀 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( 𝑖 + 𝑀 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( 𝑖 + 𝑀 ) ) ) ) |
| 37 |
32 35 36
|
syl2an2r |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( 𝑖 + 𝑀 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( 𝑖 + 𝑀 ) ) ) ) |
| 38 |
30 37
|
eqtr4d |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( 𝐹 ‘ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( 𝑖 + 𝑀 ) ) ) |
| 39 |
|
fvco2 |
⊢ ( ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( 𝐹 ∘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) ) ) |
| 40 |
5 39
|
sylan |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( 𝐹 ∘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) ) ) |
| 41 |
14
|
ancoms |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑊 ∈ Word 𝐴 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 42 |
41
|
eqcomd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑊 ∈ Word 𝐴 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) |
| 43 |
42
|
oveq2d |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑊 ∈ Word 𝐴 ) → ( 0 ... ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
| 44 |
43
|
eleq2d |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑊 ∈ Word 𝐴 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
| 45 |
44
|
biimpd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑊 ∈ Word 𝐴 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
| 46 |
45
|
ex |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑊 ∈ Word 𝐴 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
| 47 |
46
|
com13 |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝐴 → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ∈ Word 𝐴 → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
| 49 |
48
|
3imp21 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
| 50 |
12 13 49
|
3jca |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
| 51 |
|
swrdfv |
⊢ ( ( ( ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( ( 𝐹 ∘ 𝑊 ) substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( 𝑖 + 𝑀 ) ) ) |
| 52 |
50 51
|
sylan |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( ( 𝐹 ∘ 𝑊 ) substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( 𝑖 + 𝑀 ) ) ) |
| 53 |
38 40 52
|
3eqtr4d |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( 𝐹 ∘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ‘ 𝑖 ) = ( ( ( 𝐹 ∘ 𝑊 ) substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) ) |
| 54 |
10 24 53
|
eqfnfvd |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ( 𝐹 ∘ 𝑊 ) substr 〈 𝑀 , 𝑁 〉 ) ) |