| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝐹  Fn  𝐴 ) | 
						
							| 3 |  | swrdvalfn | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  Fn  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 4 | 3 | 3expb | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  Fn  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  Fn  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 6 |  | swrdrn | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ran  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  ⊆  𝐴 ) | 
						
							| 7 | 6 | 3expb | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) )  →  ran  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  ⊆  𝐴 ) | 
						
							| 8 | 7 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ran  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  ⊆  𝐴 ) | 
						
							| 9 |  | fnco | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  Fn  ( 0 ..^ ( 𝑁  −  𝑀 ) )  ∧  ran  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  ⊆  𝐴 )  →  ( 𝐹  ∘  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) )  Fn  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 10 | 2 5 8 9 | syl3anc | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) )  Fn  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 11 |  | wrdco | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  𝑊 )  ∈  Word  𝐵 ) | 
						
							| 12 | 11 | 3adant2 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  𝑊 )  ∈  Word  𝐵 ) | 
						
							| 13 |  | simp2l | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝑀  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 14 |  | lenco | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 0 ... ( ♯ ‘ 𝑊 ) )  =  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) | 
						
							| 17 | 16 | eleq2d | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) ) | 
						
							| 18 | 17 | biimpd | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) ) | 
						
							| 19 | 18 | expcom | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝑊  ∈  Word  𝐴  →  ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) ) ) | 
						
							| 20 | 19 | com13 | ⊢ ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  ∈  Word  𝐴  →  ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  ∈  Word  𝐴  →  ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) ) ) | 
						
							| 22 | 21 | 3imp21 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) | 
						
							| 23 |  | swrdvalfn | ⊢ ( ( ( 𝐹  ∘  𝑊 )  ∈  Word  𝐵  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) )  →  ( ( 𝐹  ∘  𝑊 )  substr  〈 𝑀 ,  𝑁 〉 )  Fn  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 24 | 12 13 22 23 | syl3anc | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ( 𝐹  ∘  𝑊 )  substr  〈 𝑀 ,  𝑁 〉 )  Fn  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 25 |  | 3anass | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ↔  ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 26 | 25 | biimpri | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊  ∈  Word  𝐴  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 27 | 26 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑊  ∈  Word  𝐴  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 28 |  | swrdfv | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝑖  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑖 )  =  ( 𝑊 ‘ ( 𝑖  +  𝑀 ) ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝑖  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( 𝐹 ‘ ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑖 ) )  =  ( 𝐹 ‘ ( 𝑊 ‘ ( 𝑖  +  𝑀 ) ) ) ) | 
						
							| 30 | 27 29 | sylan | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑖  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( 𝐹 ‘ ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑖 ) )  =  ( 𝐹 ‘ ( 𝑊 ‘ ( 𝑖  +  𝑀 ) ) ) ) | 
						
							| 31 |  | wrdfn | ⊢ ( 𝑊  ∈  Word  𝐴  →  𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 33 |  | elfzodifsumelfzo | ⊢ ( ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑖  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) )  →  ( 𝑖  +  𝑀 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 34 | 33 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑖  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) )  →  ( 𝑖  +  𝑀 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑖  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( 𝑖  +  𝑀 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 36 |  | fvco2 | ⊢ ( ( 𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑖  +  𝑀 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐹  ∘  𝑊 ) ‘ ( 𝑖  +  𝑀 ) )  =  ( 𝐹 ‘ ( 𝑊 ‘ ( 𝑖  +  𝑀 ) ) ) ) | 
						
							| 37 | 32 35 36 | syl2an2r | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑖  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ( 𝐹  ∘  𝑊 ) ‘ ( 𝑖  +  𝑀 ) )  =  ( 𝐹 ‘ ( 𝑊 ‘ ( 𝑖  +  𝑀 ) ) ) ) | 
						
							| 38 | 30 37 | eqtr4d | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑖  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( 𝐹 ‘ ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑖 ) )  =  ( ( 𝐹  ∘  𝑊 ) ‘ ( 𝑖  +  𝑀 ) ) ) | 
						
							| 39 |  | fvco2 | ⊢ ( ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  Fn  ( 0 ..^ ( 𝑁  −  𝑀 ) )  ∧  𝑖  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ( 𝐹  ∘  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ‘ 𝑖 )  =  ( 𝐹 ‘ ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑖 ) ) ) | 
						
							| 40 | 5 39 | sylan | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑖  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ( 𝐹  ∘  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ‘ 𝑖 )  =  ( 𝐹 ‘ ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑖 ) ) ) | 
						
							| 41 | 14 | ancoms | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑊  ∈  Word  𝐴 )  →  ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 42 | 41 | eqcomd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑊  ∈  Word  𝐴 )  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑊  ∈  Word  𝐴 )  →  ( 0 ... ( ♯ ‘ 𝑊 ) )  =  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) | 
						
							| 44 | 43 | eleq2d | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑊  ∈  Word  𝐴 )  →  ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) ) | 
						
							| 45 | 44 | biimpd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑊  ∈  Word  𝐴 )  →  ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) ) | 
						
							| 46 | 45 | ex | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝑊  ∈  Word  𝐴  →  ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) ) ) | 
						
							| 47 | 46 | com13 | ⊢ ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  ∈  Word  𝐴  →  ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  ∈  Word  𝐴  →  ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) ) ) | 
						
							| 49 | 48 | 3imp21 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) | 
						
							| 50 | 12 13 49 | 3jca | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ( 𝐹  ∘  𝑊 )  ∈  Word  𝐵  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) ) ) | 
						
							| 51 |  | swrdfv | ⊢ ( ( ( ( 𝐹  ∘  𝑊 )  ∈  Word  𝐵  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) ) )  ∧  𝑖  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ( ( 𝐹  ∘  𝑊 )  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑖 )  =  ( ( 𝐹  ∘  𝑊 ) ‘ ( 𝑖  +  𝑀 ) ) ) | 
						
							| 52 | 50 51 | sylan | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑖  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ( ( 𝐹  ∘  𝑊 )  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑖 )  =  ( ( 𝐹  ∘  𝑊 ) ‘ ( 𝑖  +  𝑀 ) ) ) | 
						
							| 53 | 38 40 52 | 3eqtr4d | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑖  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ( 𝐹  ∘  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ‘ 𝑖 )  =  ( ( ( 𝐹  ∘  𝑊 )  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑖 ) ) | 
						
							| 54 | 10 24 53 | eqfnfvd | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) )  =  ( ( 𝐹  ∘  𝑊 )  substr  〈 𝑀 ,  𝑁 〉 ) ) |