| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz2nn0 |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) |
| 2 |
|
elfz2nn0 |
⊢ ( 𝑁 ∈ ( 0 ... 𝑃 ) ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) |
| 3 |
|
elfzo0 |
⊢ ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ ∧ 𝐼 < ( 𝑁 − 𝑀 ) ) ) |
| 4 |
|
nn0z |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) |
| 5 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 6 |
|
znnsub |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) |
| 7 |
4 5 6
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) |
| 8 |
|
simpr |
⊢ ( ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℕ0 ) |
| 9 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ℕ0 ) |
| 10 |
|
nn0addcl |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) ∈ ℕ0 ) |
| 11 |
8 9 10
|
syl2anr |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → ( 𝐼 + 𝑀 ) ∈ ℕ0 ) |
| 12 |
11
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) → ( 𝐼 + 𝑀 ) ∈ ℕ0 ) |
| 13 |
|
0red |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ∈ ℝ ) |
| 14 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 16 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 18 |
13 15 17
|
3jca |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 20 |
|
nn0ge0 |
⊢ ( 𝑀 ∈ ℕ0 → 0 ≤ 𝑀 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑀 ) |
| 22 |
21
|
anim1i |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) |
| 23 |
|
lelttr |
⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) → 0 < 𝑁 ) ) |
| 24 |
19 22 23
|
sylc |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → 0 < 𝑁 ) |
| 25 |
24
|
ex |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 → 0 < 𝑁 ) ) |
| 26 |
|
0red |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ∈ ℝ ) |
| 27 |
16
|
adantl |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 28 |
|
nn0re |
⊢ ( 𝑃 ∈ ℕ0 → 𝑃 ∈ ℝ ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
| 30 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( ( 0 < 𝑁 ∧ 𝑁 ≤ 𝑃 ) → 0 < 𝑃 ) ) |
| 31 |
26 27 29 30
|
syl3anc |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 < 𝑁 ∧ 𝑁 ≤ 𝑃 ) → 0 < 𝑃 ) ) |
| 32 |
|
nn0z |
⊢ ( 𝑃 ∈ ℕ0 → 𝑃 ∈ ℤ ) |
| 33 |
|
elnnz |
⊢ ( 𝑃 ∈ ℕ ↔ ( 𝑃 ∈ ℤ ∧ 0 < 𝑃 ) ) |
| 34 |
33
|
simplbi2 |
⊢ ( 𝑃 ∈ ℤ → ( 0 < 𝑃 → 𝑃 ∈ ℕ ) ) |
| 35 |
32 34
|
syl |
⊢ ( 𝑃 ∈ ℕ0 → ( 0 < 𝑃 → 𝑃 ∈ ℕ ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 < 𝑃 → 𝑃 ∈ ℕ ) ) |
| 37 |
31 36
|
syld |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 < 𝑁 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) |
| 38 |
37
|
exp4b |
⊢ ( 𝑃 ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( 0 < 𝑁 → ( 𝑁 ≤ 𝑃 → 𝑃 ∈ ℕ ) ) ) ) |
| 39 |
38
|
com24 |
⊢ ( 𝑃 ∈ ℕ0 → ( 𝑁 ≤ 𝑃 → ( 0 < 𝑁 → ( 𝑁 ∈ ℕ0 → 𝑃 ∈ ℕ ) ) ) ) |
| 40 |
39
|
imp |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 0 < 𝑁 → ( 𝑁 ∈ ℕ0 → 𝑃 ∈ ℕ ) ) ) |
| 41 |
40
|
com13 |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 < 𝑁 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 < 𝑁 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) ) |
| 43 |
25 42
|
syld |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) ) |
| 44 |
43
|
imp |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) |
| 46 |
45
|
imp |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) → 𝑃 ∈ ℕ ) |
| 47 |
|
nn0re |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℝ ) |
| 49 |
15
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ℝ ) |
| 50 |
|
readdcl |
⊢ ( ( 𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝐼 + 𝑀 ) ∈ ℝ ) |
| 51 |
48 49 50
|
syl2anr |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → ( 𝐼 + 𝑀 ) ∈ ℝ ) |
| 52 |
51
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) ∈ ℝ ) |
| 53 |
17
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → 𝑁 ∈ ℝ ) |
| 54 |
53
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → 𝑁 ∈ ℝ ) |
| 55 |
54
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 56 |
28
|
adantl |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
| 57 |
52 55 56
|
3jca |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → ( ( 𝐼 + 𝑀 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) ) |
| 58 |
57
|
adantr |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑃 ) → ( ( 𝐼 + 𝑀 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) ) |
| 59 |
47
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℝ ) |
| 60 |
15
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 61 |
17
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 62 |
59 60 61
|
ltaddsubd |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐼 ∈ ℕ0 ) → ( ( 𝐼 + 𝑀 ) < 𝑁 ↔ 𝐼 < ( 𝑁 − 𝑀 ) ) ) |
| 63 |
62
|
exbiri |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐼 ∈ ℕ0 → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( 𝐼 + 𝑀 ) < 𝑁 ) ) ) |
| 64 |
63
|
impcomd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) < 𝑁 ) ) |
| 65 |
64
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → ( ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) < 𝑁 ) ) |
| 66 |
65
|
imp |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → ( 𝐼 + 𝑀 ) < 𝑁 ) |
| 67 |
66
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) < 𝑁 ) |
| 68 |
67
|
anim1i |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑃 ) → ( ( 𝐼 + 𝑀 ) < 𝑁 ∧ 𝑁 ≤ 𝑃 ) ) |
| 69 |
|
ltletr |
⊢ ( ( ( 𝐼 + 𝑀 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( ( ( 𝐼 + 𝑀 ) < 𝑁 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) < 𝑃 ) ) |
| 70 |
58 68 69
|
sylc |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) < 𝑃 ) |
| 71 |
70
|
anasss |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) → ( 𝐼 + 𝑀 ) < 𝑃 ) |
| 72 |
|
elfzo0 |
⊢ ( ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ↔ ( ( 𝐼 + 𝑀 ) ∈ ℕ0 ∧ 𝑃 ∈ ℕ ∧ ( 𝐼 + 𝑀 ) < 𝑃 ) ) |
| 73 |
12 46 71 72
|
syl3anbrc |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) |
| 74 |
73
|
exp53 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( 𝐼 ∈ ℕ0 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) ) ) |
| 75 |
7 74
|
sylbird |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 − 𝑀 ) ∈ ℕ → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( 𝐼 ∈ ℕ0 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) ) ) |
| 76 |
75
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑁 − 𝑀 ) ∈ ℕ → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( 𝐼 ∈ ℕ0 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) ) ) |
| 77 |
76
|
com14 |
⊢ ( 𝐼 ∈ ℕ0 → ( ( 𝑁 − 𝑀 ) ∈ ℕ → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) ) ) |
| 78 |
77
|
3imp |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ ∧ 𝐼 < ( 𝑁 − 𝑀 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 79 |
3 78
|
sylbi |
⊢ ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 80 |
79
|
com13 |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 81 |
80
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 82 |
2 81
|
sylbi |
⊢ ( 𝑁 ∈ ( 0 ... 𝑃 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 83 |
82
|
com12 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝑁 ∈ ( 0 ... 𝑃 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 84 |
1 83
|
sylbi |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝑁 ∈ ( 0 ... 𝑃 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 85 |
84
|
imp |
⊢ ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... 𝑃 ) ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) |