| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz2nn0 |
|
| 2 |
|
elfz2nn0 |
|
| 3 |
|
elfzo0 |
|
| 4 |
|
nn0z |
|
| 5 |
|
nn0z |
|
| 6 |
|
znnsub |
|
| 7 |
4 5 6
|
syl2an |
|
| 8 |
|
simpr |
|
| 9 |
|
simpll |
|
| 10 |
|
nn0addcl |
|
| 11 |
8 9 10
|
syl2anr |
|
| 12 |
11
|
adantr |
|
| 13 |
|
0red |
|
| 14 |
|
nn0re |
|
| 15 |
14
|
adantr |
|
| 16 |
|
nn0re |
|
| 17 |
16
|
adantl |
|
| 18 |
13 15 17
|
3jca |
|
| 19 |
18
|
adantr |
|
| 20 |
|
nn0ge0 |
|
| 21 |
20
|
adantr |
|
| 22 |
21
|
anim1i |
|
| 23 |
|
lelttr |
|
| 24 |
19 22 23
|
sylc |
|
| 25 |
24
|
ex |
|
| 26 |
|
0red |
|
| 27 |
16
|
adantl |
|
| 28 |
|
nn0re |
|
| 29 |
28
|
adantr |
|
| 30 |
|
ltletr |
|
| 31 |
26 27 29 30
|
syl3anc |
|
| 32 |
|
nn0z |
|
| 33 |
|
elnnz |
|
| 34 |
33
|
simplbi2 |
|
| 35 |
32 34
|
syl |
|
| 36 |
35
|
adantr |
|
| 37 |
31 36
|
syld |
|
| 38 |
37
|
exp4b |
|
| 39 |
38
|
com24 |
|
| 40 |
39
|
imp |
|
| 41 |
40
|
com13 |
|
| 42 |
41
|
adantl |
|
| 43 |
25 42
|
syld |
|
| 44 |
43
|
imp |
|
| 45 |
44
|
adantr |
|
| 46 |
45
|
imp |
|
| 47 |
|
nn0re |
|
| 48 |
47
|
adantl |
|
| 49 |
15
|
adantr |
|
| 50 |
|
readdcl |
|
| 51 |
48 49 50
|
syl2anr |
|
| 52 |
51
|
adantr |
|
| 53 |
17
|
adantr |
|
| 54 |
53
|
adantr |
|
| 55 |
54
|
adantr |
|
| 56 |
28
|
adantl |
|
| 57 |
52 55 56
|
3jca |
|
| 58 |
57
|
adantr |
|
| 59 |
47
|
adantl |
|
| 60 |
15
|
adantr |
|
| 61 |
17
|
adantr |
|
| 62 |
59 60 61
|
ltaddsubd |
|
| 63 |
62
|
exbiri |
|
| 64 |
63
|
impcomd |
|
| 65 |
64
|
adantr |
|
| 66 |
65
|
imp |
|
| 67 |
66
|
adantr |
|
| 68 |
67
|
anim1i |
|
| 69 |
|
ltletr |
|
| 70 |
58 68 69
|
sylc |
|
| 71 |
70
|
anasss |
|
| 72 |
|
elfzo0 |
|
| 73 |
12 46 71 72
|
syl3anbrc |
|
| 74 |
73
|
exp53 |
|
| 75 |
7 74
|
sylbird |
|
| 76 |
75
|
3adant3 |
|
| 77 |
76
|
com14 |
|
| 78 |
77
|
3imp |
|
| 79 |
3 78
|
sylbi |
|
| 80 |
79
|
com13 |
|
| 81 |
80
|
3adant1 |
|
| 82 |
2 81
|
sylbi |
|
| 83 |
82
|
com12 |
|
| 84 |
1 83
|
sylbi |
|
| 85 |
84
|
imp |
|