Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018) (Proof shortened by AV, 5-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | elfzom1elp1fzo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzofz | |
|
2 | elfzuz2 | |
|
3 | elnn0uz | |
|
4 | zcn | |
|
5 | 4 | anim1i | |
6 | elnnnn0 | |
|
7 | 5 6 | sylibr | |
8 | 7 | expcom | |
9 | 3 8 | sylbir | |
10 | 1 2 9 | 3syl | |
11 | 10 | impcom | |
12 | 1nn0 | |
|
13 | 12 | a1i | |
14 | nnnn0 | |
|
15 | nnge1 | |
|
16 | 13 14 15 | 3jca | |
17 | 11 16 | syl | |
18 | elfz2nn0 | |
|
19 | 17 18 | sylibr | |
20 | fzossrbm1 | |
|
21 | 20 | adantr | |
22 | fzossfz | |
|
23 | 21 22 | sstrdi | |
24 | simpr | |
|
25 | 23 24 | jca | |
26 | ssel2 | |
|
27 | elfzubelfz | |
|
28 | 25 26 27 | 3syl | |
29 | 19 28 | jca | |
30 | elfzodifsumelfzo | |
|
31 | 29 24 30 | sylc | |