Metamath Proof Explorer


Theorem elfzom1elp1fzo

Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018) (Proof shortened by AV, 5-Jan-2020)

Ref Expression
Assertion elfzom1elp1fzo NI0..^N1I+10..^N

Proof

Step Hyp Ref Expression
1 elfzofz I0..^N1I0N1
2 elfzuz2 I0N1N10
3 elnn0uz N10N10
4 zcn NN
5 4 anim1i NN10NN10
6 elnnnn0 NNN10
7 5 6 sylibr NN10N
8 7 expcom N10NN
9 3 8 sylbir N10NN
10 1 2 9 3syl I0..^N1NN
11 10 impcom NI0..^N1N
12 1nn0 10
13 12 a1i N10
14 nnnn0 NN0
15 nnge1 N1N
16 13 14 15 3jca N10N01N
17 11 16 syl NI0..^N110N01N
18 elfz2nn0 10N10N01N
19 17 18 sylibr NI0..^N110N
20 fzossrbm1 N0..^N10..^N
21 20 adantr NI0..^N10..^N10..^N
22 fzossfz 0..^N0N
23 21 22 sstrdi NI0..^N10..^N10N
24 simpr NI0..^N1I0..^N1
25 23 24 jca NI0..^N10..^N10NI0..^N1
26 ssel2 0..^N10NI0..^N1I0N
27 elfzubelfz I0NN0N
28 25 26 27 3syl NI0..^N1N0N
29 19 28 jca NI0..^N110NN0N
30 elfzodifsumelfzo 10NN0NI0..^N1I+10..^N
31 29 24 30 sylc NI0..^N1I+10..^N