Metamath Proof Explorer


Theorem elfzom1elfzo

Description: Membership in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 18-Jun-2018)

Ref Expression
Assertion elfzom1elfzo NI0..^N1I0..^N

Proof

Step Hyp Ref Expression
1 fzossrbm1 N0..^N10..^N
2 1 sselda NI0..^N1I0..^N