Metamath Proof Explorer


Theorem elnnnn0

Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004)

Ref Expression
Assertion elnnnn0 NNN10

Proof

Step Hyp Ref Expression
1 nncn NN
2 npcan1 NN-1+1=N
3 2 eleq1d NN-1+1N
4 peano2cnm NN1
5 4 biantrurd NN-1+1N1N-1+1
6 3 5 bitr3d NNN1N-1+1
7 elnn0nn N10N1N-1+1
8 6 7 bitr4di NNN10
9 1 8 biadanii NNN10