| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovexd |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) -> ( W substr <. M , N >. ) e. _V ) |
| 2 |
|
elfznn0 |
|- ( L e. ( 0 ... ( N - M ) ) -> L e. NN0 ) |
| 3 |
|
pfxval |
|- ( ( ( W substr <. M , N >. ) e. _V /\ L e. NN0 ) -> ( ( W substr <. M , N >. ) prefix L ) = ( ( W substr <. M , N >. ) substr <. 0 , L >. ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) /\ L e. ( 0 ... ( N - M ) ) ) -> ( ( W substr <. M , N >. ) prefix L ) = ( ( W substr <. M , N >. ) substr <. 0 , L >. ) ) |
| 5 |
|
fznn0sub |
|- ( M e. ( 0 ... N ) -> ( N - M ) e. NN0 ) |
| 6 |
5
|
3ad2ant3 |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) -> ( N - M ) e. NN0 ) |
| 7 |
|
0elfz |
|- ( ( N - M ) e. NN0 -> 0 e. ( 0 ... ( N - M ) ) ) |
| 8 |
6 7
|
syl |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) -> 0 e. ( 0 ... ( N - M ) ) ) |
| 9 |
8
|
anim1i |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) /\ L e. ( 0 ... ( N - M ) ) ) -> ( 0 e. ( 0 ... ( N - M ) ) /\ L e. ( 0 ... ( N - M ) ) ) ) |
| 10 |
|
swrdswrd |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) -> ( ( 0 e. ( 0 ... ( N - M ) ) /\ L e. ( 0 ... ( N - M ) ) ) -> ( ( W substr <. M , N >. ) substr <. 0 , L >. ) = ( W substr <. ( M + 0 ) , ( M + L ) >. ) ) ) |
| 11 |
10
|
imp |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) /\ ( 0 e. ( 0 ... ( N - M ) ) /\ L e. ( 0 ... ( N - M ) ) ) ) -> ( ( W substr <. M , N >. ) substr <. 0 , L >. ) = ( W substr <. ( M + 0 ) , ( M + L ) >. ) ) |
| 12 |
9 11
|
syldan |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) /\ L e. ( 0 ... ( N - M ) ) ) -> ( ( W substr <. M , N >. ) substr <. 0 , L >. ) = ( W substr <. ( M + 0 ) , ( M + L ) >. ) ) |
| 13 |
|
elfznn0 |
|- ( M e. ( 0 ... N ) -> M e. NN0 ) |
| 14 |
|
nn0cn |
|- ( M e. NN0 -> M e. CC ) |
| 15 |
14
|
addridd |
|- ( M e. NN0 -> ( M + 0 ) = M ) |
| 16 |
13 15
|
syl |
|- ( M e. ( 0 ... N ) -> ( M + 0 ) = M ) |
| 17 |
16
|
3ad2ant3 |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) -> ( M + 0 ) = M ) |
| 18 |
17
|
adantr |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) /\ L e. ( 0 ... ( N - M ) ) ) -> ( M + 0 ) = M ) |
| 19 |
18
|
opeq1d |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) /\ L e. ( 0 ... ( N - M ) ) ) -> <. ( M + 0 ) , ( M + L ) >. = <. M , ( M + L ) >. ) |
| 20 |
19
|
oveq2d |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) /\ L e. ( 0 ... ( N - M ) ) ) -> ( W substr <. ( M + 0 ) , ( M + L ) >. ) = ( W substr <. M , ( M + L ) >. ) ) |
| 21 |
4 12 20
|
3eqtrd |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) /\ L e. ( 0 ... ( N - M ) ) ) -> ( ( W substr <. M , N >. ) prefix L ) = ( W substr <. M , ( M + L ) >. ) ) |
| 22 |
21
|
ex |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ M e. ( 0 ... N ) ) -> ( L e. ( 0 ... ( N - M ) ) -> ( ( W substr <. M , N >. ) prefix L ) = ( W substr <. M , ( M + L ) >. ) ) ) |