| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfi.1 |
|- X = ( Base ` G ) |
| 2 |
1
|
pgpfi |
|- ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) ) |
| 3 |
|
id |
|- ( P e. Prime -> P e. Prime ) |
| 4 |
1
|
grpbn0 |
|- ( G e. Grp -> X =/= (/) ) |
| 5 |
|
hashnncl |
|- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 6 |
4 5
|
syl5ibrcom |
|- ( G e. Grp -> ( X e. Fin -> ( # ` X ) e. NN ) ) |
| 7 |
6
|
imp |
|- ( ( G e. Grp /\ X e. Fin ) -> ( # ` X ) e. NN ) |
| 8 |
|
pcprmpw |
|- ( ( P e. Prime /\ ( # ` X ) e. NN ) -> ( E. n e. NN0 ( # ` X ) = ( P ^ n ) <-> ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 9 |
3 7 8
|
syl2anr |
|- ( ( ( G e. Grp /\ X e. Fin ) /\ P e. Prime ) -> ( E. n e. NN0 ( # ` X ) = ( P ^ n ) <-> ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 10 |
9
|
pm5.32da |
|- ( ( G e. Grp /\ X e. Fin ) -> ( ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) <-> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |
| 11 |
2 10
|
bitrd |
|- ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |