Step |
Hyp |
Ref |
Expression |
1 |
|
pgpfi.1 |
|- X = ( Base ` G ) |
2 |
|
simpl |
|- ( ( P pGrp G /\ X e. Fin ) -> P pGrp G ) |
3 |
|
pgpgrp |
|- ( P pGrp G -> G e. Grp ) |
4 |
1
|
pgpfi2 |
|- ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |
5 |
3 4
|
sylan |
|- ( ( P pGrp G /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |
6 |
2 5
|
mpbid |
|- ( ( P pGrp G /\ X e. Fin ) -> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
7 |
6
|
simprd |
|- ( ( P pGrp G /\ X e. Fin ) -> ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |