Metamath Proof Explorer


Theorem pgphash

Description: The order of a p-group. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypothesis pgpfi.1 X=BaseG
Assertion pgphash PpGrpGXFinX=PPpCntX

Proof

Step Hyp Ref Expression
1 pgpfi.1 X=BaseG
2 simpl PpGrpGXFinPpGrpG
3 pgpgrp PpGrpGGGrp
4 1 pgpfi2 GGrpXFinPpGrpGPX=PPpCntX
5 3 4 sylan PpGrpGXFinPpGrpGPX=PPpCntX
6 2 5 mpbid PpGrpGXFinPX=PPpCntX
7 6 simprd PpGrpGXFinX=PPpCntX