| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
|- H e. CH |
| 2 |
|
pjidm.2 |
|- A e. ~H |
| 3 |
|
pjsslem.1 |
|- G e. CH |
| 4 |
3
|
choccli |
|- ( _|_ ` G ) e. CH |
| 5 |
1 2 4
|
pjssmii |
|- ( H C_ ( _|_ ` G ) -> ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ` A ) ) |
| 6 |
5
|
oveq2d |
|- ( H C_ ( _|_ ` G ) -> ( A -h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( A -h ( ( projh ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ` A ) ) ) |
| 7 |
3 2
|
pjpoi |
|- ( ( projh ` G ) ` A ) = ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) |
| 8 |
7
|
oveq2i |
|- ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
| 9 |
4 2
|
pjhclii |
|- ( ( projh ` ( _|_ ` G ) ) ` A ) e. ~H |
| 10 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
| 11 |
9 10
|
hvnegdii |
|- ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` H ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) |
| 12 |
11
|
oveq2i |
|- ( A +h ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) ) = ( A +h ( ( ( projh ` H ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
| 13 |
|
hvaddsub12 |
|- ( ( ( ( projh ` H ) ` A ) e. ~H /\ A e. ~H /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ~H ) -> ( ( ( projh ` H ) ` A ) +h ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) = ( A +h ( ( ( projh ` H ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) ) |
| 14 |
10 2 9 13
|
mp3an |
|- ( ( ( projh ` H ) ` A ) +h ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) = ( A +h ( ( ( projh ` H ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
| 15 |
12 14
|
eqtr4i |
|- ( A +h ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) ) = ( ( ( projh ` H ) ` A ) +h ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
| 16 |
8 15
|
eqtr4i |
|- ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) = ( A +h ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) ) |
| 17 |
9 10
|
hvsubcli |
|- ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ~H |
| 18 |
2 17
|
hvsubvali |
|- ( A -h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( A +h ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) ) |
| 19 |
16 18
|
eqtr4i |
|- ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) = ( A -h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |
| 20 |
1 3
|
chjcomi |
|- ( H vH G ) = ( G vH H ) |
| 21 |
3 1
|
chdmm4i |
|- ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) = ( G vH H ) |
| 22 |
20 21
|
eqtr4i |
|- ( H vH G ) = ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) |
| 23 |
22
|
fveq2i |
|- ( projh ` ( H vH G ) ) = ( projh ` ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ) |
| 24 |
23
|
fveq1i |
|- ( ( projh ` ( H vH G ) ) ` A ) = ( ( projh ` ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ) ` A ) |
| 25 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
| 26 |
4 25
|
chincli |
|- ( ( _|_ ` G ) i^i ( _|_ ` H ) ) e. CH |
| 27 |
26 2
|
pjopi |
|- ( ( projh ` ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ) ` A ) = ( A -h ( ( projh ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ` A ) ) |
| 28 |
24 27
|
eqtri |
|- ( ( projh ` ( H vH G ) ) ` A ) = ( A -h ( ( projh ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ` A ) ) |
| 29 |
6 19 28
|
3eqtr4g |
|- ( H C_ ( _|_ ` G ) -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) = ( ( projh ` ( H vH G ) ) ` A ) ) |
| 30 |
29
|
eqcomd |
|- ( H C_ ( _|_ ` G ) -> ( ( projh ` ( H vH G ) ) ` A ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) ) |