| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
|- H e. CH |
| 2 |
|
pjidm.2 |
|- A e. ~H |
| 3 |
|
pjsslem.1 |
|- G e. CH |
| 4 |
3 2
|
pjclii |
|- ( ( projh ` G ) ` A ) e. G |
| 5 |
1 2
|
pjclii |
|- ( ( projh ` H ) ` A ) e. H |
| 6 |
|
ssel |
|- ( H C_ G -> ( ( ( projh ` H ) ` A ) e. H -> ( ( projh ` H ) ` A ) e. G ) ) |
| 7 |
5 6
|
mpi |
|- ( H C_ G -> ( ( projh ` H ) ` A ) e. G ) |
| 8 |
3
|
chshii |
|- G e. SH |
| 9 |
|
shsubcl |
|- ( ( G e. SH /\ ( ( projh ` G ) ` A ) e. G /\ ( ( projh ` H ) ` A ) e. G ) -> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. G ) |
| 10 |
8 9
|
mp3an1 |
|- ( ( ( ( projh ` G ) ` A ) e. G /\ ( ( projh ` H ) ` A ) e. G ) -> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. G ) |
| 11 |
4 7 10
|
sylancr |
|- ( H C_ G -> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. G ) |
| 12 |
1 2 3
|
pjsslem |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) |
| 13 |
1 3
|
chsscon3i |
|- ( H C_ G <-> ( _|_ ` G ) C_ ( _|_ ` H ) ) |
| 14 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
| 15 |
14 2
|
pjclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) |
| 16 |
3
|
choccli |
|- ( _|_ ` G ) e. CH |
| 17 |
16 2
|
pjclii |
|- ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) |
| 18 |
|
ssel |
|- ( ( _|_ ` G ) C_ ( _|_ ` H ) -> ( ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) ) |
| 19 |
17 18
|
mpi |
|- ( ( _|_ ` G ) C_ ( _|_ ` H ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) |
| 20 |
14
|
chshii |
|- ( _|_ ` H ) e. SH |
| 21 |
|
shsubcl |
|- ( ( ( _|_ ` H ) e. SH /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
| 22 |
20 21
|
mp3an1 |
|- ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
| 23 |
15 19 22
|
sylancr |
|- ( ( _|_ ` G ) C_ ( _|_ ` H ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
| 24 |
13 23
|
sylbi |
|- ( H C_ G -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
| 25 |
12 24
|
eqeltrrid |
|- ( H C_ G -> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) ) |
| 26 |
11 25
|
jca |
|- ( H C_ G -> ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. G /\ ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) ) ) |
| 27 |
|
elin |
|- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( G i^i ( _|_ ` H ) ) <-> ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. G /\ ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) ) ) |
| 28 |
3 14
|
chincli |
|- ( G i^i ( _|_ ` H ) ) e. CH |
| 29 |
3 2
|
pjhclii |
|- ( ( projh ` G ) ` A ) e. ~H |
| 30 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
| 31 |
29 30
|
hvsubcli |
|- ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ~H |
| 32 |
28 31
|
pjchi |
|- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( G i^i ( _|_ ` H ) ) <-> ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |
| 33 |
27 32
|
bitr3i |
|- ( ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. G /\ ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) ) <-> ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |
| 34 |
26 33
|
sylib |
|- ( H C_ G -> ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |
| 35 |
28 29 30
|
pjsubii |
|- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) |
| 36 |
28 29
|
pjhclii |
|- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) e. ~H |
| 37 |
28 30
|
pjhclii |
|- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) e. ~H |
| 38 |
36 37
|
hvsubvali |
|- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) +h ( -u 1 .h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) ) |
| 39 |
|
inss1 |
|- ( G i^i ( _|_ ` H ) ) C_ G |
| 40 |
28 2 3
|
pjss2i |
|- ( ( G i^i ( _|_ ` H ) ) C_ G -> ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) |
| 41 |
39 40
|
ax-mp |
|- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) |
| 42 |
1
|
chshii |
|- H e. SH |
| 43 |
|
shococss |
|- ( H e. SH -> H C_ ( _|_ ` ( _|_ ` H ) ) ) |
| 44 |
42 43
|
ax-mp |
|- H C_ ( _|_ ` ( _|_ ` H ) ) |
| 45 |
|
inss2 |
|- ( G i^i ( _|_ ` H ) ) C_ ( _|_ ` H ) |
| 46 |
28 14
|
chsscon3i |
|- ( ( G i^i ( _|_ ` H ) ) C_ ( _|_ ` H ) <-> ( _|_ ` ( _|_ ` H ) ) C_ ( _|_ ` ( G i^i ( _|_ ` H ) ) ) ) |
| 47 |
45 46
|
mpbi |
|- ( _|_ ` ( _|_ ` H ) ) C_ ( _|_ ` ( G i^i ( _|_ ` H ) ) ) |
| 48 |
44 47
|
sstri |
|- H C_ ( _|_ ` ( G i^i ( _|_ ` H ) ) ) |
| 49 |
48 5
|
sselii |
|- ( ( projh ` H ) ` A ) e. ( _|_ ` ( G i^i ( _|_ ` H ) ) ) |
| 50 |
28 30
|
pjoc2i |
|- ( ( ( projh ` H ) ` A ) e. ( _|_ ` ( G i^i ( _|_ ` H ) ) ) <-> ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) = 0h ) |
| 51 |
49 50
|
mpbi |
|- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) = 0h |
| 52 |
51
|
oveq2i |
|- ( -u 1 .h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) = ( -u 1 .h 0h ) |
| 53 |
|
neg1cn |
|- -u 1 e. CC |
| 54 |
|
hvmul0 |
|- ( -u 1 e. CC -> ( -u 1 .h 0h ) = 0h ) |
| 55 |
53 54
|
ax-mp |
|- ( -u 1 .h 0h ) = 0h |
| 56 |
52 55
|
eqtri |
|- ( -u 1 .h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) = 0h |
| 57 |
41 56
|
oveq12i |
|- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) +h ( -u 1 .h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) ) = ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) +h 0h ) |
| 58 |
28 2
|
pjhclii |
|- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) e. ~H |
| 59 |
|
ax-hvaddid |
|- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) e. ~H -> ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) +h 0h ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) |
| 60 |
58 59
|
ax-mp |
|- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) +h 0h ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) |
| 61 |
57 60
|
eqtri |
|- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) +h ( -u 1 .h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) |
| 62 |
38 61
|
eqtri |
|- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) |
| 63 |
35 62
|
eqtri |
|- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) |
| 64 |
34 63
|
eqtr3di |
|- ( H C_ G -> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) |