Metamath Proof Explorer


Theorem pjssmii

Description: Projection meet property. Remark in Kalmbach p. 66. Also Theorem 4.5(i)->(iv) of Beran p. 112. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 HC
pjidm.2 A
pjsslem.1 GC
Assertion pjssmii HGprojGA-projHA=projGHA

Proof

Step Hyp Ref Expression
1 pjidm.1 HC
2 pjidm.2 A
3 pjsslem.1 GC
4 3 2 pjclii projGAG
5 1 2 pjclii projHAH
6 ssel HGprojHAHprojHAG
7 5 6 mpi HGprojHAG
8 3 chshii GS
9 shsubcl GSprojGAGprojHAGprojGA-projHAG
10 8 9 mp3an1 projGAGprojHAGprojGA-projHAG
11 4 7 10 sylancr HGprojGA-projHAG
12 1 2 3 pjsslem projHA-projGA=projGA-projHA
13 1 3 chsscon3i HGGH
14 1 choccli HC
15 14 2 pjclii projHAH
16 3 choccli GC
17 16 2 pjclii projGAG
18 ssel GHprojGAGprojGAH
19 17 18 mpi GHprojGAH
20 14 chshii HS
21 shsubcl HSprojHAHprojGAHprojHA-projGAH
22 20 21 mp3an1 projHAHprojGAHprojHA-projGAH
23 15 19 22 sylancr GHprojHA-projGAH
24 13 23 sylbi HGprojHA-projGAH
25 12 24 eqeltrrid HGprojGA-projHAH
26 11 25 jca HGprojGA-projHAGprojGA-projHAH
27 elin projGA-projHAGHprojGA-projHAGprojGA-projHAH
28 3 14 chincli GHC
29 3 2 pjhclii projGA
30 1 2 pjhclii projHA
31 29 30 hvsubcli projGA-projHA
32 28 31 pjchi projGA-projHAGHprojGHprojGA-projHA=projGA-projHA
33 27 32 bitr3i projGA-projHAGprojGA-projHAHprojGHprojGA-projHA=projGA-projHA
34 26 33 sylib HGprojGHprojGA-projHA=projGA-projHA
35 28 29 30 pjsubii projGHprojGA-projHA=projGHprojGA-projGHprojHA
36 28 29 pjhclii projGHprojGA
37 28 30 pjhclii projGHprojHA
38 36 37 hvsubvali projGHprojGA-projGHprojHA=projGHprojGA+-1projGHprojHA
39 inss1 GHG
40 28 2 3 pjss2i GHGprojGHprojGA=projGHA
41 39 40 ax-mp projGHprojGA=projGHA
42 1 chshii HS
43 shococss HSHH
44 42 43 ax-mp HH
45 inss2 GHH
46 28 14 chsscon3i GHHHGH
47 45 46 mpbi HGH
48 44 47 sstri HGH
49 48 5 sselii projHAGH
50 28 30 pjoc2i projHAGHprojGHprojHA=0
51 49 50 mpbi projGHprojHA=0
52 51 oveq2i -1projGHprojHA=-10
53 neg1cn 1
54 hvmul0 1-10=0
55 53 54 ax-mp -10=0
56 52 55 eqtri -1projGHprojHA=0
57 41 56 oveq12i projGHprojGA+-1projGHprojHA=projGHA+0
58 28 2 pjhclii projGHA
59 ax-hvaddid projGHAprojGHA+0=projGHA
60 58 59 ax-mp projGHA+0=projGHA
61 57 60 eqtri projGHprojGA+-1projGHprojHA=projGHA
62 38 61 eqtri projGHprojGA-projGHprojHA=projGHA
63 35 62 eqtri projGHprojGA-projHA=projGHA
64 34 63 eqtr3di HGprojGA-projHA=projGHA