Metamath Proof Explorer


Theorem pjchi

Description: Projection of a vector in the projection subspace. Lemma 4.4(ii) of Beran p. 111. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjop.1 HC
pjop.2 A
Assertion pjchi AHprojHA=A

Proof

Step Hyp Ref Expression
1 pjop.1 HC
2 pjop.2 A
3 1 2 pjhclii projHA
4 ax-hvaddid projHAprojHA+0=projHA
5 3 4 ax-mp projHA+0=projHA
6 1 2 pjpji A=projHA+projHA
7 1 2 pjoc1i AHprojHA=0
8 7 biimpi AHprojHA=0
9 8 oveq2d AHprojHA+projHA=projHA+0
10 6 9 eqtr2id AHprojHA+0=A
11 5 10 eqtr3id AHprojHA=A
12 1 2 pjclii projHAH
13 eleq1 projHA=AprojHAHAH
14 12 13 mpbii projHA=AAH
15 11 14 impbii AHprojHA=A