Metamath Proof Explorer


Theorem pjchi

Description: Projection of a vector in the projection subspace. Lemma 4.4(ii) of Beran p. 111. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjop.1
|- H e. CH
pjop.2
|- A e. ~H
Assertion pjchi
|- ( A e. H <-> ( ( projh ` H ) ` A ) = A )

Proof

Step Hyp Ref Expression
1 pjop.1
 |-  H e. CH
2 pjop.2
 |-  A e. ~H
3 1 2 pjhclii
 |-  ( ( projh ` H ) ` A ) e. ~H
4 ax-hvaddid
 |-  ( ( ( projh ` H ) ` A ) e. ~H -> ( ( ( projh ` H ) ` A ) +h 0h ) = ( ( projh ` H ) ` A ) )
5 3 4 ax-mp
 |-  ( ( ( projh ` H ) ` A ) +h 0h ) = ( ( projh ` H ) ` A )
6 1 2 pjpji
 |-  A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) )
7 1 2 pjoc1i
 |-  ( A e. H <-> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h )
8 7 biimpi
 |-  ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h )
9 8 oveq2d
 |-  ( A e. H -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h 0h ) )
10 6 9 syl5req
 |-  ( A e. H -> ( ( ( projh ` H ) ` A ) +h 0h ) = A )
11 5 10 syl5eqr
 |-  ( A e. H -> ( ( projh ` H ) ` A ) = A )
12 1 2 pjclii
 |-  ( ( projh ` H ) ` A ) e. H
13 eleq1
 |-  ( ( ( projh ` H ) ` A ) = A -> ( ( ( projh ` H ) ` A ) e. H <-> A e. H ) )
14 12 13 mpbii
 |-  ( ( ( projh ` H ) ` A ) = A -> A e. H )
15 11 14 impbii
 |-  ( A e. H <-> ( ( projh ` H ) ` A ) = A )