Step |
Hyp |
Ref |
Expression |
1 |
|
pjop.1 |
|- H e. CH |
2 |
|
pjop.2 |
|- A e. ~H |
3 |
1 2
|
pjopi |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) = ( A -h ( ( projh ` H ) ` A ) ) |
4 |
1
|
chshii |
|- H e. SH |
5 |
1 2
|
pjclii |
|- ( ( projh ` H ) ` A ) e. H |
6 |
|
shsubcl |
|- ( ( H e. SH /\ A e. H /\ ( ( projh ` H ) ` A ) e. H ) -> ( A -h ( ( projh ` H ) ` A ) ) e. H ) |
7 |
4 5 6
|
mp3an13 |
|- ( A e. H -> ( A -h ( ( projh ` H ) ` A ) ) e. H ) |
8 |
3 7
|
eqeltrid |
|- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. H ) |
9 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
10 |
9 2
|
pjclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) |
11 |
8 10
|
jctir |
|- ( A e. H -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) ) ) |
12 |
|
elin |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( H i^i ( _|_ ` H ) ) <-> ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) ) ) |
13 |
11 12
|
sylibr |
|- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( H i^i ( _|_ ` H ) ) ) |
14 |
|
ocin |
|- ( H e. SH -> ( H i^i ( _|_ ` H ) ) = 0H ) |
15 |
4 14
|
ax-mp |
|- ( H i^i ( _|_ ` H ) ) = 0H |
16 |
13 15
|
eleqtrdi |
|- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. 0H ) |
17 |
|
elch0 |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. 0H <-> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |
18 |
16 17
|
sylib |
|- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |
19 |
1 2
|
pjpji |
|- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
20 |
|
oveq2 |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h 0h ) ) |
21 |
19 20
|
eqtrid |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h -> A = ( ( ( projh ` H ) ` A ) +h 0h ) ) |
22 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
23 |
|
ax-hvaddid |
|- ( ( ( projh ` H ) ` A ) e. ~H -> ( ( ( projh ` H ) ` A ) +h 0h ) = ( ( projh ` H ) ` A ) ) |
24 |
22 23
|
ax-mp |
|- ( ( ( projh ` H ) ` A ) +h 0h ) = ( ( projh ` H ) ` A ) |
25 |
21 24
|
eqtrdi |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h -> A = ( ( projh ` H ) ` A ) ) |
26 |
25 5
|
eqeltrdi |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h -> A e. H ) |
27 |
18 26
|
impbii |
|- ( A e. H <-> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |