Metamath Proof Explorer


Theorem pjsslem

Description: Lemma for subset relationships of projections. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 HC
pjidm.2 A
pjsslem.1 GC
Assertion pjsslem projHA-projGA=projGA-projHA

Proof

Step Hyp Ref Expression
1 pjidm.1 HC
2 pjidm.2 A
3 pjsslem.1 GC
4 pjo HCAprojHA=projA-projHA
5 1 2 4 mp2an projHA=projA-projHA
6 pjo GCAprojGA=projA-projGA
7 3 2 6 mp2an projGA=projA-projGA
8 5 7 oveq12i projHA-projGA=projA-projHA-projA-projGA
9 helch C
10 9 2 pjclii projA
11 1 2 pjhclii projHA
12 3 2 pjhclii projGA
13 10 11 10 12 hvsubsub4i projA-projHA-projA-projGA=projA-projA-projHA-projGA
14 hvsubid projAprojA-projA=0
15 10 14 ax-mp projA-projA=0
16 15 oveq1i projA-projA-projHA-projGA=0-projHA-projGA
17 8 13 16 3eqtri projHA-projGA=0-projHA-projGA
18 11 12 hvsubcli projHA-projGA
19 18 hv2negi 0-projHA-projGA=-1projHA-projGA
20 11 12 hvnegdii -1projHA-projGA=projGA-projHA
21 17 19 20 3eqtri projHA-projGA=projGA-projHA