Metamath Proof Explorer


Theorem pjsubii

Description: Projection of vector difference is difference of projections. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 HC
pjidm.2 A
pjsub.3 B
Assertion pjsubii projHA-B=projHA-projHB

Proof

Step Hyp Ref Expression
1 pjidm.1 HC
2 pjidm.2 A
3 pjsub.3 B
4 neg1cn 1
5 4 3 hvmulcli -1B
6 1 2 5 pjaddii projHA+-1B=projHA+projH-1B
7 1 3 4 pjmulii projH-1B=-1projHB
8 7 oveq2i projHA+projH-1B=projHA+-1projHB
9 6 8 eqtri projHA+-1B=projHA+-1projHB
10 2 3 hvsubvali A-B=A+-1B
11 10 fveq2i projHA-B=projHA+-1B
12 1 2 pjhclii projHA
13 1 3 pjhclii projHB
14 12 13 hvsubvali projHA-projHB=projHA+-1projHB
15 9 11 14 3eqtr4i projHA-B=projHA-projHB