Metamath Proof Explorer


Theorem pjcji

Description: The projection on a subspace join is the sum of the projections. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 𝐻C
pjidm.2 𝐴 ∈ ℋ
pjsslem.1 𝐺C
Assertion pjcji ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( proj ‘ ( 𝐻 𝐺 ) ) ‘ 𝐴 ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj𝐺 ) ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 pjidm.1 𝐻C
2 pjidm.2 𝐴 ∈ ℋ
3 pjsslem.1 𝐺C
4 3 choccli ( ⊥ ‘ 𝐺 ) ∈ C
5 1 2 4 pjssmii ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( proj ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) )
6 5 oveq2d ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( 𝐴 ( ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) ) = ( 𝐴 ( ( proj ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) )
7 3 2 pjpoi ( ( proj𝐺 ) ‘ 𝐴 ) = ( 𝐴 ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) )
8 7 oveq2i ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj𝐺 ) ‘ 𝐴 ) ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( 𝐴 ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) )
9 4 2 pjhclii ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ℋ
10 1 2 pjhclii ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ
11 9 10 hvnegdii ( - 1 · ( ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) − ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) )
12 11 oveq2i ( 𝐴 + ( - 1 · ( ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) ) ) = ( 𝐴 + ( ( ( proj𝐻 ) ‘ 𝐴 ) − ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) )
13 hvaddsub12 ( ( ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( 𝐴 ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) = ( 𝐴 + ( ( ( proj𝐻 ) ‘ 𝐴 ) − ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) )
14 10 2 9 13 mp3an ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( 𝐴 ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) = ( 𝐴 + ( ( ( proj𝐻 ) ‘ 𝐴 ) − ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) )
15 12 14 eqtr4i ( 𝐴 + ( - 1 · ( ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) ) ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( 𝐴 ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) )
16 8 15 eqtr4i ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj𝐺 ) ‘ 𝐴 ) ) = ( 𝐴 + ( - 1 · ( ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) ) )
17 9 10 hvsubcli ( ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) ∈ ℋ
18 2 17 hvsubvali ( 𝐴 ( ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) ) = ( 𝐴 + ( - 1 · ( ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) ) )
19 16 18 eqtr4i ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj𝐺 ) ‘ 𝐴 ) ) = ( 𝐴 ( ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) )
20 1 3 chjcomi ( 𝐻 𝐺 ) = ( 𝐺 𝐻 )
21 3 1 chdmm4i ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) = ( 𝐺 𝐻 )
22 20 21 eqtr4i ( 𝐻 𝐺 ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) )
23 22 fveq2i ( proj ‘ ( 𝐻 𝐺 ) ) = ( proj ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) )
24 23 fveq1i ( ( proj ‘ ( 𝐻 𝐺 ) ) ‘ 𝐴 ) = ( ( proj ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ‘ 𝐴 )
25 1 choccli ( ⊥ ‘ 𝐻 ) ∈ C
26 4 25 chincli ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ∈ C
27 26 2 pjopi ( ( proj ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ‘ 𝐴 ) = ( 𝐴 ( ( proj ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) )
28 24 27 eqtri ( ( proj ‘ ( 𝐻 𝐺 ) ) ‘ 𝐴 ) = ( 𝐴 ( ( proj ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) )
29 6 19 28 3eqtr4g ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj𝐺 ) ‘ 𝐴 ) ) = ( ( proj ‘ ( 𝐻 𝐺 ) ) ‘ 𝐴 ) )
30 29 eqcomd ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( proj ‘ ( 𝐻 𝐺 ) ) ‘ 𝐴 ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj𝐺 ) ‘ 𝐴 ) ) )