| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
|
pjidm.2 |
⊢ 𝐴 ∈ ℋ |
| 3 |
|
pjsslem.1 |
⊢ 𝐺 ∈ Cℋ |
| 4 |
3
|
choccli |
⊢ ( ⊥ ‘ 𝐺 ) ∈ Cℋ |
| 5 |
1 2 4
|
pjssmii |
⊢ ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( 𝐴 −ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) ) |
| 7 |
3 2
|
pjpoi |
⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) |
| 8 |
7
|
oveq2i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) |
| 9 |
4 2
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ℋ |
| 10 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 11 |
9 10
|
hvnegdii |
⊢ ( - 1 ·ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) |
| 12 |
11
|
oveq2i |
⊢ ( 𝐴 +ℎ ( - 1 ·ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) = ( 𝐴 +ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) |
| 13 |
|
hvaddsub12 |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) = ( 𝐴 +ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) ) |
| 14 |
10 2 9 13
|
mp3an |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) = ( 𝐴 +ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) |
| 15 |
12 14
|
eqtr4i |
⊢ ( 𝐴 +ℎ ( - 1 ·ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) |
| 16 |
8 15
|
eqtr4i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
| 17 |
9 10
|
hvsubcli |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ℋ |
| 18 |
2 17
|
hvsubvali |
⊢ ( 𝐴 −ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
| 19 |
16 18
|
eqtr4i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 𝐴 −ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 20 |
1 3
|
chjcomi |
⊢ ( 𝐻 ∨ℋ 𝐺 ) = ( 𝐺 ∨ℋ 𝐻 ) |
| 21 |
3 1
|
chdmm4i |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) = ( 𝐺 ∨ℋ 𝐻 ) |
| 22 |
20 21
|
eqtr4i |
⊢ ( 𝐻 ∨ℋ 𝐺 ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) |
| 23 |
22
|
fveq2i |
⊢ ( projℎ ‘ ( 𝐻 ∨ℋ 𝐺 ) ) = ( projℎ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
| 24 |
23
|
fveq1i |
⊢ ( ( projℎ ‘ ( 𝐻 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ‘ 𝐴 ) |
| 25 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 26 |
4 25
|
chincli |
⊢ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ∈ Cℋ |
| 27 |
26 2
|
pjopi |
⊢ ( ( projℎ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) |
| 28 |
24 27
|
eqtri |
⊢ ( ( projℎ ‘ ( 𝐻 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) |
| 29 |
6 19 28
|
3eqtr4g |
⊢ ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( 𝐻 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) ) |
| 30 |
29
|
eqcomd |
⊢ ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( projℎ ‘ ( 𝐻 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |