Step |
Hyp |
Ref |
Expression |
1 |
|
pjsdi.1 |
|- H e. CH |
2 |
|
pjsdi.2 |
|- S : ~H --> ~H |
3 |
|
pjsdi.3 |
|- T : ~H --> ~H |
4 |
2
|
ffvelrni |
|- ( x e. ~H -> ( S ` x ) e. ~H ) |
5 |
3
|
ffvelrni |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
6 |
1
|
pjsubi |
|- ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( projh ` H ) ` ( ( S ` x ) -h ( T ` x ) ) ) = ( ( ( projh ` H ) ` ( S ` x ) ) -h ( ( projh ` H ) ` ( T ` x ) ) ) ) |
7 |
4 5 6
|
syl2anc |
|- ( x e. ~H -> ( ( projh ` H ) ` ( ( S ` x ) -h ( T ` x ) ) ) = ( ( ( projh ` H ) ` ( S ` x ) ) -h ( ( projh ` H ) ` ( T ` x ) ) ) ) |
8 |
|
hodval |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S -op T ) ` x ) = ( ( S ` x ) -h ( T ` x ) ) ) |
9 |
2 3 8
|
mp3an12 |
|- ( x e. ~H -> ( ( S -op T ) ` x ) = ( ( S ` x ) -h ( T ` x ) ) ) |
10 |
9
|
fveq2d |
|- ( x e. ~H -> ( ( projh ` H ) ` ( ( S -op T ) ` x ) ) = ( ( projh ` H ) ` ( ( S ` x ) -h ( T ` x ) ) ) ) |
11 |
1
|
pjfi |
|- ( projh ` H ) : ~H --> ~H |
12 |
11 2
|
hocoi |
|- ( x e. ~H -> ( ( ( projh ` H ) o. S ) ` x ) = ( ( projh ` H ) ` ( S ` x ) ) ) |
13 |
11 3
|
hocoi |
|- ( x e. ~H -> ( ( ( projh ` H ) o. T ) ` x ) = ( ( projh ` H ) ` ( T ` x ) ) ) |
14 |
12 13
|
oveq12d |
|- ( x e. ~H -> ( ( ( ( projh ` H ) o. S ) ` x ) -h ( ( ( projh ` H ) o. T ) ` x ) ) = ( ( ( projh ` H ) ` ( S ` x ) ) -h ( ( projh ` H ) ` ( T ` x ) ) ) ) |
15 |
7 10 14
|
3eqtr4d |
|- ( x e. ~H -> ( ( projh ` H ) ` ( ( S -op T ) ` x ) ) = ( ( ( ( projh ` H ) o. S ) ` x ) -h ( ( ( projh ` H ) o. T ) ` x ) ) ) |
16 |
2 3
|
hosubcli |
|- ( S -op T ) : ~H --> ~H |
17 |
11 16
|
hocoi |
|- ( x e. ~H -> ( ( ( projh ` H ) o. ( S -op T ) ) ` x ) = ( ( projh ` H ) ` ( ( S -op T ) ` x ) ) ) |
18 |
11 2
|
hocofi |
|- ( ( projh ` H ) o. S ) : ~H --> ~H |
19 |
11 3
|
hocofi |
|- ( ( projh ` H ) o. T ) : ~H --> ~H |
20 |
|
hodval |
|- ( ( ( ( projh ` H ) o. S ) : ~H --> ~H /\ ( ( projh ` H ) o. T ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( ( projh ` H ) o. S ) -op ( ( projh ` H ) o. T ) ) ` x ) = ( ( ( ( projh ` H ) o. S ) ` x ) -h ( ( ( projh ` H ) o. T ) ` x ) ) ) |
21 |
18 19 20
|
mp3an12 |
|- ( x e. ~H -> ( ( ( ( projh ` H ) o. S ) -op ( ( projh ` H ) o. T ) ) ` x ) = ( ( ( ( projh ` H ) o. S ) ` x ) -h ( ( ( projh ` H ) o. T ) ` x ) ) ) |
22 |
15 17 21
|
3eqtr4d |
|- ( x e. ~H -> ( ( ( projh ` H ) o. ( S -op T ) ) ` x ) = ( ( ( ( projh ` H ) o. S ) -op ( ( projh ` H ) o. T ) ) ` x ) ) |
23 |
22
|
rgen |
|- A. x e. ~H ( ( ( projh ` H ) o. ( S -op T ) ) ` x ) = ( ( ( ( projh ` H ) o. S ) -op ( ( projh ` H ) o. T ) ) ` x ) |
24 |
11 16
|
hocofi |
|- ( ( projh ` H ) o. ( S -op T ) ) : ~H --> ~H |
25 |
18 19
|
hosubcli |
|- ( ( ( projh ` H ) o. S ) -op ( ( projh ` H ) o. T ) ) : ~H --> ~H |
26 |
24 25
|
hoeqi |
|- ( A. x e. ~H ( ( ( projh ` H ) o. ( S -op T ) ) ` x ) = ( ( ( ( projh ` H ) o. S ) -op ( ( projh ` H ) o. T ) ) ` x ) <-> ( ( projh ` H ) o. ( S -op T ) ) = ( ( ( projh ` H ) o. S ) -op ( ( projh ` H ) o. T ) ) ) |
27 |
23 26
|
mpbi |
|- ( ( projh ` H ) o. ( S -op T ) ) = ( ( ( projh ` H ) o. S ) -op ( ( projh ` H ) o. T ) ) |