| Step |
Hyp |
Ref |
Expression |
| 1 |
|
choccl |
|- ( H e. CH -> ( _|_ ` H ) e. CH ) |
| 2 |
|
pjhcl |
|- ( ( ( _|_ ` H ) e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H ) |
| 3 |
1 2
|
sylan |
|- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H ) |
| 4 |
|
pjhcl |
|- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. ~H ) |
| 5 |
|
ax-hvcom |
|- ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H /\ ( ( projh ` H ) ` A ) e. ~H ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 6 |
3 4 5
|
syl2anc |
|- ( ( H e. CH /\ A e. ~H ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 7 |
|
axpjpj |
|- ( ( H e. CH /\ A e. ~H ) -> A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 8 |
6 7
|
eqtr4d |
|- ( ( H e. CH /\ A e. ~H ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = A ) |
| 9 |
|
simpr |
|- ( ( H e. CH /\ A e. ~H ) -> A e. ~H ) |
| 10 |
|
hvsubadd |
|- ( ( A e. ~H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H /\ ( ( projh ` H ) ` A ) e. ~H ) -> ( ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( projh ` H ) ` A ) <-> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = A ) ) |
| 11 |
9 3 4 10
|
syl3anc |
|- ( ( H e. CH /\ A e. ~H ) -> ( ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( projh ` H ) ` A ) <-> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = A ) ) |
| 12 |
8 11
|
mpbird |
|- ( ( H e. CH /\ A e. ~H ) -> ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( projh ` H ) ` A ) ) |
| 13 |
12
|
eqcomd |
|- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) = ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |