| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtridf1o.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | pmtridf1o.x |  |-  ( ph -> X e. A ) | 
						
							| 3 |  | pmtridf1o.y |  |-  ( ph -> Y e. A ) | 
						
							| 4 |  | pmtridf1o.t |  |-  T = if ( X = Y , ( _I |` A ) , ( ( pmTrsp ` A ) ` { X , Y } ) ) | 
						
							| 5 |  | simpr |  |-  ( ( ph /\ X = Y ) -> X = Y ) | 
						
							| 6 | 5 | iftrued |  |-  ( ( ph /\ X = Y ) -> if ( X = Y , ( _I |` A ) , ( ( pmTrsp ` A ) ` { X , Y } ) ) = ( _I |` A ) ) | 
						
							| 7 | 4 6 | eqtrid |  |-  ( ( ph /\ X = Y ) -> T = ( _I |` A ) ) | 
						
							| 8 | 7 | fveq1d |  |-  ( ( ph /\ X = Y ) -> ( T ` X ) = ( ( _I |` A ) ` X ) ) | 
						
							| 9 |  | fvresi |  |-  ( X e. A -> ( ( _I |` A ) ` X ) = X ) | 
						
							| 10 | 2 9 | syl |  |-  ( ph -> ( ( _I |` A ) ` X ) = X ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ph /\ X = Y ) -> ( ( _I |` A ) ` X ) = X ) | 
						
							| 12 | 8 11 5 | 3eqtrd |  |-  ( ( ph /\ X = Y ) -> ( T ` X ) = Y ) | 
						
							| 13 |  | simpr |  |-  ( ( ph /\ X =/= Y ) -> X =/= Y ) | 
						
							| 14 | 13 | neneqd |  |-  ( ( ph /\ X =/= Y ) -> -. X = Y ) | 
						
							| 15 | 14 | iffalsed |  |-  ( ( ph /\ X =/= Y ) -> if ( X = Y , ( _I |` A ) , ( ( pmTrsp ` A ) ` { X , Y } ) ) = ( ( pmTrsp ` A ) ` { X , Y } ) ) | 
						
							| 16 | 4 15 | eqtrid |  |-  ( ( ph /\ X =/= Y ) -> T = ( ( pmTrsp ` A ) ` { X , Y } ) ) | 
						
							| 17 | 16 | fveq1d |  |-  ( ( ph /\ X =/= Y ) -> ( T ` X ) = ( ( ( pmTrsp ` A ) ` { X , Y } ) ` X ) ) | 
						
							| 18 | 1 | adantr |  |-  ( ( ph /\ X =/= Y ) -> A e. V ) | 
						
							| 19 | 2 | adantr |  |-  ( ( ph /\ X =/= Y ) -> X e. A ) | 
						
							| 20 | 3 | adantr |  |-  ( ( ph /\ X =/= Y ) -> Y e. A ) | 
						
							| 21 |  | eqid |  |-  ( pmTrsp ` A ) = ( pmTrsp ` A ) | 
						
							| 22 | 21 | pmtrprfv |  |-  ( ( A e. V /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> ( ( ( pmTrsp ` A ) ` { X , Y } ) ` X ) = Y ) | 
						
							| 23 | 18 19 20 13 22 | syl13anc |  |-  ( ( ph /\ X =/= Y ) -> ( ( ( pmTrsp ` A ) ` { X , Y } ) ` X ) = Y ) | 
						
							| 24 | 17 23 | eqtrd |  |-  ( ( ph /\ X =/= Y ) -> ( T ` X ) = Y ) | 
						
							| 25 | 12 24 | pm2.61dane |  |-  ( ph -> ( T ` X ) = Y ) |