| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtridf1o.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | pmtridf1o.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐴 ) | 
						
							| 3 |  | pmtridf1o.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐴 ) | 
						
							| 4 |  | pmtridf1o.t | ⊢ 𝑇  =  if ( 𝑋  =  𝑌 ,  (  I   ↾  𝐴 ) ,  ( ( pmTrsp ‘ 𝐴 ) ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  𝑋  =  𝑌 ) | 
						
							| 6 | 5 | iftrued | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  if ( 𝑋  =  𝑌 ,  (  I   ↾  𝐴 ) ,  ( ( pmTrsp ‘ 𝐴 ) ‘ { 𝑋 ,  𝑌 } ) )  =  (  I   ↾  𝐴 ) ) | 
						
							| 7 | 4 6 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  𝑇  =  (  I   ↾  𝐴 ) ) | 
						
							| 8 | 7 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  ( 𝑇 ‘ 𝑋 )  =  ( (  I   ↾  𝐴 ) ‘ 𝑋 ) ) | 
						
							| 9 |  | fvresi | ⊢ ( 𝑋  ∈  𝐴  →  ( (  I   ↾  𝐴 ) ‘ 𝑋 )  =  𝑋 ) | 
						
							| 10 | 2 9 | syl | ⊢ ( 𝜑  →  ( (  I   ↾  𝐴 ) ‘ 𝑋 )  =  𝑋 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  ( (  I   ↾  𝐴 ) ‘ 𝑋 )  =  𝑋 ) | 
						
							| 12 | 8 11 5 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  ( 𝑇 ‘ 𝑋 )  =  𝑌 ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  𝑋  ≠  𝑌 ) | 
						
							| 14 | 13 | neneqd | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  ¬  𝑋  =  𝑌 ) | 
						
							| 15 | 14 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  if ( 𝑋  =  𝑌 ,  (  I   ↾  𝐴 ) ,  ( ( pmTrsp ‘ 𝐴 ) ‘ { 𝑋 ,  𝑌 } ) )  =  ( ( pmTrsp ‘ 𝐴 ) ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 16 | 4 15 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  𝑇  =  ( ( pmTrsp ‘ 𝐴 ) ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 17 | 16 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  ( 𝑇 ‘ 𝑋 )  =  ( ( ( pmTrsp ‘ 𝐴 ) ‘ { 𝑋 ,  𝑌 } ) ‘ 𝑋 ) ) | 
						
							| 18 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  𝐴  ∈  𝑉 ) | 
						
							| 19 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  𝑋  ∈  𝐴 ) | 
						
							| 20 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  𝑌  ∈  𝐴 ) | 
						
							| 21 |  | eqid | ⊢ ( pmTrsp ‘ 𝐴 )  =  ( pmTrsp ‘ 𝐴 ) | 
						
							| 22 | 21 | pmtrprfv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑋  ≠  𝑌 ) )  →  ( ( ( pmTrsp ‘ 𝐴 ) ‘ { 𝑋 ,  𝑌 } ) ‘ 𝑋 )  =  𝑌 ) | 
						
							| 23 | 18 19 20 13 22 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  ( ( ( pmTrsp ‘ 𝐴 ) ‘ { 𝑋 ,  𝑌 } ) ‘ 𝑋 )  =  𝑌 ) | 
						
							| 24 | 17 23 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  ( 𝑇 ‘ 𝑋 )  =  𝑌 ) | 
						
							| 25 | 12 24 | pm2.61dane | ⊢ ( 𝜑  →  ( 𝑇 ‘ 𝑋 )  =  𝑌 ) |