| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 |  |-  S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) | 
						
							| 2 |  | fzfid |  |-  ( a e. RR -> ( 1 ... ( |_ ` a ) ) e. Fin ) | 
						
							| 3 |  | elfznn |  |-  ( i e. ( 1 ... ( |_ ` a ) ) -> i e. NN ) | 
						
							| 4 | 3 | adantl |  |-  ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> i e. NN ) | 
						
							| 5 |  | vmacl |  |-  ( i e. NN -> ( Lam ` i ) e. RR ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> ( Lam ` i ) e. RR ) | 
						
							| 7 | 4 | nnrpd |  |-  ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> i e. RR+ ) | 
						
							| 8 | 7 | relogcld |  |-  ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> ( log ` i ) e. RR ) | 
						
							| 9 |  | simpl |  |-  ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> a e. RR ) | 
						
							| 10 | 9 4 | nndivred |  |-  ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> ( a / i ) e. RR ) | 
						
							| 11 |  | chpcl |  |-  ( ( a / i ) e. RR -> ( psi ` ( a / i ) ) e. RR ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> ( psi ` ( a / i ) ) e. RR ) | 
						
							| 13 | 8 12 | readdcld |  |-  ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> ( ( log ` i ) + ( psi ` ( a / i ) ) ) e. RR ) | 
						
							| 14 | 6 13 | remulcld |  |-  ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) e. RR ) | 
						
							| 15 | 2 14 | fsumrecl |  |-  ( a e. RR -> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) e. RR ) | 
						
							| 16 | 1 15 | fmpti |  |-  S : RR --> RR |