| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 |  |-  S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) | 
						
							| 2 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 3 | 1 | pntsval |  |-  ( x e. RR -> ( S ` x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( x e. RR+ -> ( S ` x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( x e. RR+ -> ( ( S ` x ) / x ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( x e. RR+ -> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 7 | 6 | mpteq2ia |  |-  ( x e. RR+ |-> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 8 |  | selberg |  |-  ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) | 
						
							| 9 | 7 8 | eqeltri |  |-  ( x e. RR+ |-> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |