Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( n = d -> ( Lam ` n ) = ( Lam ` d ) ) |
2 |
|
oveq2 |
|- ( n = d -> ( x / n ) = ( x / d ) ) |
3 |
2
|
fveq2d |
|- ( n = d -> ( psi ` ( x / n ) ) = ( psi ` ( x / d ) ) ) |
4 |
1 3
|
oveq12d |
|- ( n = d -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) = ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) |
5 |
4
|
cbvsumv |
|- sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) |
6 |
|
fzfid |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / d ) ) ) e. Fin ) |
7 |
|
elfznn |
|- ( d e. ( 1 ... ( |_ ` x ) ) -> d e. NN ) |
8 |
7
|
adantl |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d e. NN ) |
9 |
|
vmacl |
|- ( d e. NN -> ( Lam ` d ) e. RR ) |
10 |
8 9
|
syl |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` d ) e. RR ) |
11 |
10
|
recnd |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` d ) e. CC ) |
12 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( x / d ) ) ) -> m e. NN ) |
13 |
12
|
adantl |
|- ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> m e. NN ) |
14 |
|
vmacl |
|- ( m e. NN -> ( Lam ` m ) e. RR ) |
15 |
13 14
|
syl |
|- ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( Lam ` m ) e. RR ) |
16 |
15
|
recnd |
|- ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( Lam ` m ) e. CC ) |
17 |
6 11 16
|
fsummulc2 |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( Lam ` m ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` m ) ) ) |
18 |
7
|
nnrpd |
|- ( d e. ( 1 ... ( |_ ` x ) ) -> d e. RR+ ) |
19 |
|
rpdivcl |
|- ( ( x e. RR+ /\ d e. RR+ ) -> ( x / d ) e. RR+ ) |
20 |
18 19
|
sylan2 |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x / d ) e. RR+ ) |
21 |
20
|
rpred |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x / d ) e. RR ) |
22 |
|
chpval |
|- ( ( x / d ) e. RR -> ( psi ` ( x / d ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( Lam ` m ) ) |
23 |
21 22
|
syl |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / d ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( Lam ` m ) ) |
24 |
23
|
oveq2d |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) = ( ( Lam ` d ) x. sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( Lam ` m ) ) ) |
25 |
13
|
nncnd |
|- ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> m e. CC ) |
26 |
7
|
ad2antlr |
|- ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> d e. NN ) |
27 |
26
|
nncnd |
|- ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> d e. CC ) |
28 |
26
|
nnne0d |
|- ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> d =/= 0 ) |
29 |
25 27 28
|
divcan3d |
|- ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( d x. m ) / d ) = m ) |
30 |
29
|
fveq2d |
|- ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( Lam ` ( ( d x. m ) / d ) ) = ( Lam ` m ) ) |
31 |
30
|
oveq2d |
|- ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` m ) ) ) |
32 |
31
|
sumeq2dv |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` m ) ) ) |
33 |
17 24 32
|
3eqtr4d |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) ) |
34 |
33
|
sumeq2dv |
|- ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) ) |
35 |
5 34
|
eqtrid |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) ) |
36 |
|
fvoveq1 |
|- ( n = ( d x. m ) -> ( Lam ` ( n / d ) ) = ( Lam ` ( ( d x. m ) / d ) ) ) |
37 |
36
|
oveq2d |
|- ( n = ( d x. m ) -> ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) ) |
38 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
39 |
|
ssrab2 |
|- { y e. NN | y || n } C_ NN |
40 |
|
simprr |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> d e. { y e. NN | y || n } ) |
41 |
39 40
|
sselid |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> d e. NN ) |
42 |
41
|
anassrs |
|- ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> d e. NN ) |
43 |
42 9
|
syl |
|- ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> ( Lam ` d ) e. RR ) |
44 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
45 |
44
|
adantl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
46 |
|
dvdsdivcl |
|- ( ( n e. NN /\ d e. { y e. NN | y || n } ) -> ( n / d ) e. { y e. NN | y || n } ) |
47 |
45 46
|
sylan |
|- ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> ( n / d ) e. { y e. NN | y || n } ) |
48 |
39 47
|
sselid |
|- ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> ( n / d ) e. NN ) |
49 |
|
vmacl |
|- ( ( n / d ) e. NN -> ( Lam ` ( n / d ) ) e. RR ) |
50 |
48 49
|
syl |
|- ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> ( Lam ` ( n / d ) ) e. RR ) |
51 |
43 50
|
remulcld |
|- ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) e. RR ) |
52 |
51
|
recnd |
|- ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) e. CC ) |
53 |
52
|
anasss |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) e. CC ) |
54 |
37 38 53
|
dvdsflsumcom |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) ) |
55 |
35 54
|
eqtr4d |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) ) |
56 |
55
|
oveq1d |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) ) ) |
57 |
|
fzfid |
|- ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
58 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
59 |
45 58
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
60 |
59
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) |
61 |
44
|
nnrpd |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) |
62 |
|
rpdivcl |
|- ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) |
63 |
61 62
|
sylan2 |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
64 |
63
|
rpred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
65 |
|
chpcl |
|- ( ( x / n ) e. RR -> ( psi ` ( x / n ) ) e. RR ) |
66 |
64 65
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. RR ) |
67 |
66
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. CC ) |
68 |
60 67
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. CC ) |
69 |
45
|
nnrpd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
70 |
|
relogcl |
|- ( n e. RR+ -> ( log ` n ) e. RR ) |
71 |
69 70
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) |
72 |
71
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) |
73 |
60 72
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( log ` n ) ) e. CC ) |
74 |
57 68 73
|
fsumadd |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) ) ) |
75 |
|
fzfid |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... n ) e. Fin ) |
76 |
|
dvdsssfz1 |
|- ( n e. NN -> { y e. NN | y || n } C_ ( 1 ... n ) ) |
77 |
45 76
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> { y e. NN | y || n } C_ ( 1 ... n ) ) |
78 |
75 77
|
ssfid |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> { y e. NN | y || n } e. Fin ) |
79 |
78 51
|
fsumrecl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) e. RR ) |
80 |
79
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) e. CC ) |
81 |
57 80 73
|
fsumadd |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) ) ) |
82 |
56 74 81
|
3eqtr4d |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) |
83 |
72 67
|
addcomd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` n ) + ( psi ` ( x / n ) ) ) = ( ( psi ` ( x / n ) ) + ( log ` n ) ) ) |
84 |
83
|
oveq2d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) = ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) + ( log ` n ) ) ) ) |
85 |
60 67 72
|
adddid |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) + ( log ` n ) ) ) = ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) |
86 |
84 85
|
eqtrd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) = ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) |
87 |
86
|
sumeq2dv |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) |
88 |
|
logsqvma2 |
|- ( n e. NN -> sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = ( sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) |
89 |
45 88
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = ( sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) |
90 |
89
|
sumeq2dv |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) |
91 |
82 87 90
|
3eqtr4d |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) ) |
92 |
|
fvoveq1 |
|- ( n = ( d x. m ) -> ( log ` ( n / d ) ) = ( log ` ( ( d x. m ) / d ) ) ) |
93 |
92
|
oveq1d |
|- ( n = ( d x. m ) -> ( ( log ` ( n / d ) ) ^ 2 ) = ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) |
94 |
93
|
oveq2d |
|- ( n = ( d x. m ) -> ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) ) |
95 |
|
mucl |
|- ( d e. NN -> ( mmu ` d ) e. ZZ ) |
96 |
41 95
|
syl |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( mmu ` d ) e. ZZ ) |
97 |
96
|
zcnd |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( mmu ` d ) e. CC ) |
98 |
61
|
ad2antrl |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> n e. RR+ ) |
99 |
41
|
nnrpd |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> d e. RR+ ) |
100 |
98 99
|
rpdivcld |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( n / d ) e. RR+ ) |
101 |
|
relogcl |
|- ( ( n / d ) e. RR+ -> ( log ` ( n / d ) ) e. RR ) |
102 |
101
|
recnd |
|- ( ( n / d ) e. RR+ -> ( log ` ( n / d ) ) e. CC ) |
103 |
100 102
|
syl |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( log ` ( n / d ) ) e. CC ) |
104 |
103
|
sqcld |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( ( log ` ( n / d ) ) ^ 2 ) e. CC ) |
105 |
97 104
|
mulcld |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) e. CC ) |
106 |
94 38 105
|
dvdsflsumcom |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) ) |
107 |
29
|
fveq2d |
|- ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( log ` ( ( d x. m ) / d ) ) = ( log ` m ) ) |
108 |
107
|
oveq1d |
|- ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) = ( ( log ` m ) ^ 2 ) ) |
109 |
108
|
oveq2d |
|- ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) |
110 |
109
|
sumeq2dv |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) |
111 |
110
|
sumeq2dv |
|- ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) |
112 |
91 106 111
|
3eqtrd |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) |
113 |
112
|
oveq1d |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) ) |
114 |
113
|
oveq1d |
|- ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
115 |
114
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
116 |
|
eqid |
|- ( ( ( ( log ` ( x / d ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / d ) ) ) ) ) / d ) = ( ( ( ( log ` ( x / d ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / d ) ) ) ) ) / d ) |
117 |
116
|
selberglem2 |
|- ( x e. RR+ |-> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
118 |
115 117
|
eqeltri |
|- ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |